

This PDF excerpt of *Programs, Courses and University Regulations* is an archived snapshot of the web content on the date that appears in the footer of the PDF.

Archival copies are available at www.mcgill.ca/study.

This publication provides guidance to prospects, applicants, students, faculty and staff.

1. McGill University reserves the right to mak

Publication Information

Published by

Enrolment Services
McGill University
3415 McTavish Street
Montreal, Quebec, H3A 0C8
Canada

All contents copyright © 2016 by McGill University. All rights reserved, including the right to reproduce this publication, or portions thereof, in any form.

McGill University reserves the right to make changes to the information contained in this publication - including correcting errors, altering fees, schedules of admission and credit requirements, and revising or cancelling particular courses or programs - without prior notification.

Not all courses are offered every year and changes can be made after publication. Always check the Minerva Class Schedule link at https://horizon.mcgill.ca/pban1/bwckschd.p_disp_dyn_sched for the most up-to-date information on whether a course is offered.

 $12.8.5.3 \qquad \text{Bachelor of Engineering (B.Eng.) - Mining Engineering CO-OP (150 \, \text{credits})} \;,$

1 About the Faculty of Engineering

The Faculty currently includes six engineering departments and two schools, and houses three institutes:

Departments

Bioengineering

Chemical Engineering

Civil Engineering and Applied Mechanics

3 Engineering Microcomputing Facility

In addition to the services provided by McGill's Information Technology Services, the Faculty

Director, School of Architecture

Martin Bressani; B.Sc.(Arch.), B.Arch.(McG.), M.Sc.(Arch.)(MIT), Ph.D.(Sorbonne)

Director, School of Urban Planning

Lisa Bornstein; B.Sc.(Calif., Berk.), M.R.P.(Cornell), Ph.D.(Calif., Berk.) (Interim)

Secretary of Faculty

Christopher Moraes; B.A.Sc., Ph.D.(Tor.)

Building Manager

Kevin Hart (Acting)

Human Resources Adviser

Susanne Baumann-Moroy

Finance Manager

Sinikhiwe Maphosa

Director, Engineering Student Centre

Chidinma Offoh-Robert

6 Degrees and Requirements for Professional Registration

Non-Professional

Bachelor of Science (Architecture)

The first professional degree in architecture is the Master of Architecture (Professional). Further information can be found in *Faculty of Engineering* > *Graduate*.

Professional

Bachelor of Engineering

Bachelor of Software Engineering

The B.Eng. and B.S.E. programs are accredited by the Canadian Engineering Accreditation Board (CEAB) of Engineers Canada and fulfil the academic requirements for admission to the provincial engineering professional organizations. Engineers Canada has also negotiated agreements with engineering organizations in other countries to grant Canadian licensed engineers the same privileges accorded to professional engineers in those countries. For more information, visit the Engineers Canada website at www.engineerscanada.ca. All students are expected to seek professional registration after graduation.

To become a professional engineer in Canada, a graduate must pass an examination on legal aspects and on the principles of professional practice, and acquire two to four years of engineering experience, depending on the province. Only persons duly registered may use the title "engineer" and perform the professional activities reserved for engineers by provincial laws and regulations.

In Quebec, the professional engineering body is the *Ordre des ingénieurs du Québec* (OIQ). In order to better prepare new graduates for the practice of their profession, McGill organizes seminars in cooperation with the OIQ on various aspects of the profession. The OIQ also has a student section. As soon as you have accumulated 60 credits in a B.Eng. or B.S.E. program, you can join the student section of the OIQ. Registration is free. For more information, visit the OIQ website at www.oig.qc.ca.

7 Admission Requirements

The Faculty of Engineering offers programs leading to the degrees of B.Eng., B.S.E., and B.Sc.(Arch.). Enrolment in Engineering programs is limited. For detailed information on admissions requirements, see the *Undergraduate Admissions Guide* at www.mcgill.ca/applying.

8

9

and B.Sc.(Arch.) programs varies depending on the program and basis of admission. You can find the curriculum for your partment/school. See www.mcgill.ca/engineering/about/departments-schools-institutes for links to department/school

he B.Eng., B.S.E., or B.Sc.(Arch.) program within six years of entry. Candidates admitted to a lengthened program, or to dvanced standing, or who are participating in a work term or in the Engineering Internship Program (EIP), will have a period in which to complete their program.

Committee on Standing in cases of serious medical problems or where other similarly uncontrollable factors have affected

of extracurricular activities for students. All are encouraged to participate. Many of these are organized within the Faculty ering Undergraduate Society (EUS). EUS publishes a handbook describing their operations and the activities of various can also find these on their website (see below). All undergraduate students automatically become members of the EUS. has a student association.

EUS and links to department/school student association websites, visit the EUS website at www.mcgilleus.ca.

ation on **extra-curricular activities and organizations**, see www.mcgill.ca/engineering/current-students/undergraduate/student-life.

For more information on student design teams and projects, see www.mcgill.ca/engineering/current-students/undergraduate/student-life/design-teams-projects.

10 **Degrees and Programs Offered**

Internship Program

Engineering Internship Program

Co-op Pr

Important Information:

- While on internship, you are expected to complete any deferrals you may have been granted, regardless of the location of the internship. If you do not write a deferred exam as scheduled, you will receive a final grade of J. The J grade will calculate as a failure in both the TGPA and CGPA.
- International students must ensure that their health coverage remains in force during their internship.
- During your time as an intern, you are not considered to be in full-time status. Your government loans will become due and payable within the prescribed grace period (usually six months).

12 Browse Academic Units & Programs

The programs and courses in the following sections have been approved for the 2016–2017 session as listed, but the Faculty reserves the right to introduce changes as may be deemed necessary or desirable.

12.1 General Engineering Program

The General Engineering Program (GEP) is offered in addition to the Faculty of Engineering's majors (Chemical, Civil, Computer, Electrical, Materials, Mechanical, Mining, and Software Engineering). The GEP permits students with strong mathematics, physics, and chemistry results in high school to pursue a common first-year curriculum without declaring a particular major program at the time of application. The GEP spans one academic year only (Year 0). Students then apply for placement and continue in an Engineering major program.

The GEP is not open to students with more than 6 transfer credits toward their engineering major (e.g., transfer credits from Advanced Placement (AP) exams or from courses taken at other universities).

Applicants who already know which major(s) they wish to study should apply directly for the major(s) rather than select the General Engineering Program option.

For more information about the General Engineering Program, see www.mcgill.ca/engineering/future-students/undergraduate-programs.

12.1.1 Bachelor of Engineering (B.Eng.) - General Engineering - Undeclared (30 credits)

The General Engineering Program (GEP) is a 30-credit course of study for the first year of a Bachelor of Engineering degree for students who have not completed a Quebec CEGEP diploma. Upon successful completion of these requirements, students must apply for placement and continue in a B.Eng. or B.S.E. program.

The GEP is not open to students with more than 6 transfer credits toward their engineering major (e.g., transfer credits from Advanced Placement (AP) exams or from courses taken at other universities).

Year 0 (Freshman) Courses

(30 credits)		
CHEM 110	(4)	General Chemistry 1
CHEM 120	(4)	General Chemistry 2
FACC 100	(1)	Introduction to the Engineering Profession
MATH 133	(3)	Linear Algebra and Geometry
MATH 140	(3)	Calculus 1
MATH 141	(4)	Calculus 2
PHYS 131	(4)	Mechanics and Waves
PHYS 142	(4)	Electromagnetism and Optics

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments:

Anthropology (ANTH)

Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)

To advance professional architectural education that flourishes through research, critical practice, and community engagement.

Mission

The School of Architecture educates professionals who contribute to the global community through the design, construction, and interpretation of the built environment. The School:

- encourages a diverse environment for teaching, learning, and research, supported by both traditional and state-of-the-art digital resources;
- develops professional and post-professional research-based Masters and Ph.D. programs that enable graduates to contribute responsibly to the profession, to research, and to careers in related fields;
- enriches multidisciplinary teaching and research within the University and in connection with other local and international universities;
- engages citizens' groups, local, provincial, and national governments, the private sector, and the profession toward the improvement of the built
 environment.

12.2.3 Architectural Certification in Canada

In Canada, all provincial/territorial associations/institutes/orders recommend a degree from an accredited professional degree program as a prerequisite for licensure. The Canadian Architectural Certification Board (CACB), which is the sole agency authorized to accredit Canadian professional degree programs in architecture, recognizes two types of accredited degrees: the **Master of Architecture (M.Arch.)**, and the **Bachelor of Architecture (B.Arch.)**. A program may be granted a two-year, three-year, or six-year term of accreditation, depending on its degree of conformance with established educational standards.

Master's degree programs may consist of a preprofessional undergraduate degree and a professional graduate degree, which, when earned sequentially, comprise an accredited professional education. However, the preprofessional degree is not, by itself, recognized as an accredited degree.

The M.Arch. (Professional) degree is accredited by the Canadian Architectural Certification Board (CACB), and is recognized as accredited by the National Council of Architectural Registration Boards (NCARB) in the United States.

12.2.4 Programs of Study

Students in the B.Sc.(Arch.) program who intend to proceed to the professional degree must satisfy certain minimum requirements. Students must:

- complete the B.Sc.(Arch.) degree, including the series of required and complementary courses stipulated for professional studies, with a minimum CGPA
 of 3.00;
- · submit a portfolio of work executed in the sequence of six design studios, as well as samples of professional and personal work;
- complete the minimum period of relevant work experience according to the current Work Experience Guidelines (see
 www.mcgill.ca/architecture/bboard/bscmai/workexperience).

Further information on the M.Arch. (Professional) program and application procedures is available at www.mcgill.ca/architecture.

12.2.4.1 Student Exchanges

A limited number of qualified students may participate in an exchange with schools of architecture at other universities that have agreements with the McGill School of Architecture, for a maximum of one term in the second year of the B.Sc.(Arch.) program. These include the following:

- Università Iuav di Venezia (Venice, Italy);
- Fakultät für Raumplanung und Architektur, Technische Universität Wien (Vienna, Austria);
- Université Catholique de Louvain (Brussels, Belgium);
- École Nationale Supérieure d'architecture de Grenoble (Grenoble, France);
- Scuola di Architettura Civile Politecnico di Milano (Boviso) (Milan, Italy);
- The Royal Danish Academy of Fine Arts, School of Architecture (Copenhagen, Denmark).

12.2.5 Ancillary Academic Facilities

Laboratories and Workshops

Facility for Architectural Research in Media Mediation (FARMM) - Professor Michael Jemtrud

 $Laboratory\ for\ Integrated\ Prototyping\ and\ Hybrid\ Environments\ (LIPHE)-Professor\ Aaron\ Sprecher$

Media Centre – Juan Osorio, Media Technician

Workshop Facilities - David Speller, Technician

Library

Blackader-Lauterman Library of Architecture and Art, located in the Redpath Library - Jennifer Garland, Liaison Librarian

Collections

 $Architecture\ Slide\ Library-Professor\ Annmarie\ Adams$

 $The \ John \ Bland \ Canadian \ Architecture \ Collection, \ housed \ in \ the \ Blackader-Lauterman \ Library-Ann \ Marie \ Holland, \ Liaison \ Librarian$

Orson Wheeler Architectural Model Collection - Professor Pieter Sijpkes

12.2.6 Architecture Faculty

Director

Martin Bressani

Graduate Program Directors

Robert Mellin (Post-professional progr

Visiting Critics and Guest Lecturers

Each year, visitors are involved in the teaching of certain courses as critics and lecturers. These visitors change from year to year. The following were visitors in 2015:

Tiphaine Abenia, Gavin Affleck, Chandler Ahrens, Ronnie Araya, Manon Asselin, George Baird, Tom Balaban, Giovanna Borasi, Kevin Botchar, Georges Boulette, Sinisha Brdar, Brian Brush, Andrew Butler, Trevor Butler, Stephane Chevalier, Azad Chichmanian, Jean-Pierre Chupin, Christina Contandriopoulos, Andrew Curtis, Jamie Dabner, Matt Daubach, Trevor Davies, Talia Dorsey, Jean-Maxime Dufresne, Mary Jean Eastman, David Edgars, Tom Egli, Viviane Ehrensberger, Andrew Forster, Maxime-Alexis Frappier, Simon Glew, Erica Goldstein, Paul Guenther, Susane Havelka, Mimi Hoang, Timothy Hyde, Hans Ibelings, Chris Ilg, Hal Ingberg, Jayne Kelley, Stephan Kowal, Michel Langevin, Emmanuelle Lapointe, Michel Lauzon, Jonathan Lessard, Carole Levesque, Jing Liu, Leslie Lok, Jeff Ma, Andrea MacElwee, Vouli Mamfredis, Cecile Martin, Eric Marosi, John McMinn, Mélanie Mignault, Shawn Moscovitch, Shaheen Namvary, Son Nguyen, Mark Poddubiuk, Stephane Pratte, Sheldon Reich, Joan Renaud, Sophie Robitaille, Lia Ruccolo, Barryger

Required Architectural Courses

73 credits		
ARCH 201	(6)	Communication, Behaviour and Architecture
ARCH 202	(6)	Architectural Graphics and Elements of Design
ARCH 221	(2)	Architectural Drawing
ARCH 240	(3)	Organization of Materials in Buildings
ARCH 241	(3)	Architectural Structures
ARCH 250	(3)	Architectural History 1
ARCH 251	(3)	Architectural History 2
ARCH 303	(6)	Design and Construction 1
ARCH 304	(6)	Design and Construction 2
ARCH 325	(2)	Architectural Sketching
ARCH 342	(3)	Digital Representation
ARCH 354	(3)	Architectural History 3
ARCH 355	(3)	Architectural History 4
ARCH 375	(2)	Landscape
ARCH 377	(3)	Energy, Environment and Buildings
ARCH 405	(6)	Design and Construction 3
ARCH 406	(6)	Design and Construction 4
ARCH 447	(2)	Lighting
ARCH 451	(2)	Building Regulations and Safety
ARCH 512	(3)	Architectural Modelling

Complementary Courses

6 credits from the following:

ARCH 378	(3)	Site Usage
ARCH 379	(3)	Summer Course Abroad
ARCH 383	(3)	Geometry and Architecture
ARCH 461	(1)	Freehand Drawing and Sketching
ARCH 490	(2)	Selected Topics in Design
ARCH 514	(4)	Community Design Workshop
ARCH 515	(3)	Sustainable Design
ARCH 517	(3)	Sustainable Residential Development
ARCH 520	(3)	Montreal: Urban Morphology
ARCH 521	(3)	Structure of Cities
ARCH 523	(3)	Significant Texts and Buildings
ARCH 525	(3)	Seminar on Analysis and Theory
ARCH 526	(3)	Philosophy of Structure
ARCH 527	(3)	Civic Design
ARCH 528	(3)	History of Housing
ARCH 529	(3)	Housing Theory
ARCH 531	(3)	Architectural Intentions Vitruvius - Renaissance

 $(3 \\ {}^{\circ} TLTreArchite \\ \textbf{Charing} \\ ins of Modern Architecture$

- BIEN 550
- BIEN 570

Bioengineering F

Required Non-Departmental Courses

44 credits		
BIOC 212	(3)	Molecular Mechanisms of Cell Function
BIOL 200	(3)	Molecular Biology
BREE 301	(3)	Biothermodynamics
CCOM 206	(3)	Communication in Engineering
CHEE 310	(3)	Physical Chemistry for Engineers
CHEM 212	(4)	Introductory Organic Chemistry 1
CIVE 281	(3)	Analytical Mechanics
COMP 208	(3)	Computers in Engineering
FACC 100*	(1)	Introduction to the Engineering Profession
FACC 300	(3)	Engineering Economy
FACC 400	(1)	Engineering Professional Practice
MATH 262	(3)	Intermediate Calculus
MATH 263	(3)	Ordinary Differential Equations for Engineers
MATH 264	(3)	Advanced Calculus for Engineers
MECH 210	(2)	Mechanics 1
PHYS 319	(3)	Introduction to Biophysics

^{*} Note FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Bioengineering Courses

23 credits		
BIEN 200	(2)	Introduction to Bioengineering
BIEN 210	(3)	Electrical and Optical Properties of Biological Systems
BIEN 290	(4)	Bioengineering Measurement Laboratory
BIEN 340	(3)	Transport Processes in Biological Systems
BIEN 390	(3)	Bioengineering Laboratory
BIEN 470D1	(3)	Bioengineering Design Project
BIEN 470D2	(3)	Bioengineering Design Project
BIEN 471	(2)	Bioengineering Research Project

Bioengineering Complementary Courses

36-37 credits

Starting in the third year (second year for CEGEP students) (Year 2), students will need to take 36 credits of courses to upgrade their general knowledge of Bioengineering. While it is not mandatory, it is highly recommended that the students choose all courses in one of the three streams of bioengineering knowledge and practice: 1) Biological Materials and Mechanics (37 credits); 2) Biomolecular and Cellular Engineering (36 credits); or 3) Biomedical, Diagnostics and High Throughput Screening Engineering (36 credits). However, students may satisfy the Bioengineering Complementary Courses requirement by taking a minimum of 30 credits from the Engineering Science and Design Complementaries course list and 6 credits of any other courses in the course lists below.

Engineering Science and Design Complementaries

30-37 credits from the following:

BIEN 310	(3)	Introduction to Biomolecular Engineering
BIEN 320	(3)	Molecular, Cellular and Tissue Biomechanics
BIEN 330	(3)	Introduction to Tissue Engineering

BIEN 350	(3)	Biosystems and Control
BIEN 462	(3)	Engineering Principles in Physiological Systems
BIEN 510	(3)	Nanoparticles in the Medical Sciences
BIEN 520	(3)	High Throughput Bioanalytical Devices
BIEN 530	(3)	Imaging and Bioanalytical Instrumentation

Stream 2: Biomolecular and Cellular Engineering

BIEN 310	(3)	Introduction to Biomolecular Engineering
BIEN 320	(3)	Molecular, Cellular and Tissue Biomechanics
BIEN 330	(3)	Introduction to Tissue Engineering
BIEN 550	(3)	Biomolecular Devices
BIEN 570	(3)	Active Mechanics in Biology
BIOC 311	(3)	Metabolic Biochemistry
BMDE 509	(3)	Quantitative Analysis and Modelling of Cellular Processes
CHEE 370	(3)	Elements of Biotechnology
CHEE 390	(3)	Computational Methods in Chemical Engineering
CIVE 557	(3)	Microbiology for Environmental Engineering
CIVE 558	(3)	Biomolecular Techniques for Environmental Engineering
PHYS 534	(3)	Nanoscience and Nanotechnology

Stream 3: Biomedical, Diagnostics and High Throughput Screening Engineering

BIEN 350	(3)	Biosystems and Control
BIEN 520	(3)	High Throughput Bioanalytical Devices
BIEN 530	(3)	Imaging and Bioanalytical Instrumentation
BIEN 560	(3)	Biosensors
CHEE 314	(3)	Fluid Mechanics
CHEM 287	(2)	Introductory Analytical Chemistry
CHEM 297	(1)	Introductory Analytical Chemistry Laboratory
CHEM 367	(3)	Instrumental Analysis 1
CIVE 558	(3)	Biomolecular Techniques for Environmental Engineering
ECSE 529	(3)	Computer and Biological Vision
MECH 502*	(3)	Topics in Mechanical Engineering

Design and Manufacture of Microd,9ture of Mic1 0 0 1 282.156 304.08 icr2 Tm(acture oytod,9ture of Mic1 0 0 1 2.aM5

GEOG 302	(3)	Environmental Management 1
MECH 526	(3)	Manufacturing and the Environment
MGPO 440*	(3)	Strategies for Sustainability
PHIL 343	(3)	Biomedical Ethics
RELG 270	(3)	Religious Ethics and the Environment
SOCI 235	(3)	Technology and Society
SOCI 312	(3)	Sociology of Work and Industry
URBP 201	(3)	Planning the 21st Century City

^{*} Note: Management courses have limited enrolment and registration dates. See Important Dates at www.mcgill.ca/importantdates.

Group B - Humanities and Social Science, Management Studies and Law

Generally, students admitted to Engineering from Quebec CEGEP's are granted transfer credits for 3 credits (one course) from the Complementary Studies Group B list.

6 credits of courses at the 200-level or higher from the following departments:

Anthropology (ANTH)

Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)

History (HIST)

Philosophy (excluding PHIL 210 and PHIL 310)

Political Science (POLI)

Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)

Religious Studies (RELG)

School of Social Work (SWRK)

Sociology (excluding SOCI 350)

OR from the following courses:

ADCH 520	(2)	TT: . CTT :
ARCH 528	(3)	History of Housing
BUSA 465*	(3)	Technological Entrepreneurship
ENVR 203	(3)	Knowledge, Ethics and Environment
ENVR 400	(3)	Environmental Thought
FACC 220	(3)	Law for Architects and Engineers
FACC 500	(3)	Technology Business Plan Design
FACC 501	(3)	Technology Business Plan Project
INDR 294*	(3)	Introduction to Labour-Management Relations
MATH 338	(3)	History and Philosophy of Mathematics
MGCR 222*	(3)	Introduction to Organizational Behaviour
MGCR 352*	(3)	Principles of Marketing
ORGB 321*	(3)	Leadership
ORGB 423*	(3)	Human Resources Management

^{*} Note: Management courses have limited enrolment and registration dates. See Important Dates: www.mcgill.ca/importantdates.

Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100-level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200-level or higher that have a sufficient cultural component. These courses must be approved by the Engineering Student Centre (Frank Dawson Adams Building, Room 22).

Elective Courses

Students from Quebec CEGEPs must take 9 credits of elective courses. These can be chosen from any course at the 200-level or higher offered by the University, subject to permission of the offering department.

12.4 **Department of Chemical Engineering**

12.4.1 Location

M.H. Wong Building, Room 3060

3610 University Street Montreal QC H3A 0C5 Telephone: 514-398-4494 Fax: 514-398-6678

Email: info.chemeng@mcgill.ca Website: www.mcgill.ca/chemeng

12.4.2 About the Department of Chemical Engineering

The central purpose of engineering is to pursue solutions to technological problems in order to satisfy the needs and desires of society. Chemical engineers are trained to solve the kinds of problems that are typically found in the "chemical process industries," which include:

- chemical manufacturing;
- plastics;
- water treatment;
- pulp and paper;
- petroleum refining;
- ceramics; and
- paint industries;

as well as substantial portions of the:

- food processing;
- textile;
- nuclear energy;
- alternative energy;
- biochemical:
- biomedical; and
- pharmaceutical industries.

The technological problems and opportunities in these industries are often closely linked to social, economic, and environmental concerns. For this reason, chemical engineers often deal with these questions while working in management, pollution abatement, product development, marketing, and equipment

By means of complementary courses, students can also obtain further depth in technical areas and breadth in non-technical subjects. Some students elect to complete a minor in biotechnology, management, materials engineering, computer science, environmental engineering, chemistry, or another minor (see section 12.11: Minor Programs for minors available to engineering students).

The solution to many environmental problems requires an understanding of technological principles; a Chemical Engineering degree provides an ideal background. In addition to relevant material learned in the core program, a selection of environmental complementary courses and minor programs is available. The involvement of many Chemical Engineering faculty members in environmental research provides the opportunity for undergraduate students to carry out research projects in this area.

The **B.Eng.** curriculum also provides the preparation necessary to undertake postgraduate studies leading to the **M.Eng.**

12.4.3 Academic Programs

The Chemical Engineering program comprises 142 credits (116 credits for those who completed the Quebec CEGEP program in Pure and Applied Sciences). Certain students who take advantage of Summer session courses can complete the program in three calendar years.

In some cases, students from university science disciplines have sufficient credits to complete the requirements for the B.Eng. (Chemical) program in two and a half years. Those concerned should discuss this with their adviser.

Students must obtain a grade of C or better in all core courses. For the Department of Chemical Engineering, core courses include all required courses (departmental and non-departmental) as well as technical complementary courses.

12.4.4 Canadian Society for Chemical Engineering

The Chemical Engineering Student Society has for many years been affiliated with both the CSChE (Canadian Society for Chemical Engineering) and with the AlChE (American Institute of Chemical Engineers). For a nominal fee, students receive Canadian Chemical News, a monthly publication, and the AlChE Student Members Bulletin, as well as other privileges of student membership in the two societies. The student chapter also organizes a series of local social, educational, and sporting events. Recent events have included student-professor banquets and Christmas parties, dances, speakers, broomball games, and joint meetings with the Montreal Section of the CSChE which gives students a chance to mix with practising chemical engineers.

12.4.5 Chemical Engineering Faculty

Chair

Sylvain Coulombe

Emeritus Professors

John M. Dealy; B.S.(Kansas), M.S.E., Ph.D.(Mich.), Eng.

Musa R. Kamal; B.S.(III.), M.S., Ph.D.(Carn. Mell), Eng.

Ri; B.S.Calif.), ei

Post-Retirement

W.J. Murray Douglas; B.Sc.(Qu.), M.S.E., Ph.D.(Mich.)

12.4.6 Bachelor of Engineering (B.Eng.) - Chemical Engineering (142 credits)

Program credit weight: 142-145 credits

Program credit weight for Quebec CEGEP students: 116 credits Program credit weight for out-of-province students: 142 credits

The discipline of chemical engineering is distinctive in being based equally on physics, mathematics, and chemistry. Application of these three fundamental sciences is basic to a quantitative understanding of the process industries. Those with an interest in the fourth fundamental science, biology, will find several courses in the chemical engineering curriculum that integrate aspects of the biological sciences relevant to process industries such as food processing, fermentation, biomedical, and water pollution control. Courses on the technical operations and economics of the process industries are added to this foundation. The core curriculum concludes with process design courses taught by practising design engineers. Problem-solving, experimenting, planning, and communication skills are emphasized in courses throughout the core curriculum.

Certain students who take advantage of Summer session courses can complete the departmental program in three calendar years.

In some cases, students from university science disciplines have sufficient credits to complete the requirements for the B.Eng. (Chemical) program in two and a half years. Those concerned should discuss this with their adviser.

Students must obtain a grade of C or better in all core courses. For the Department of Chemical Engineering, core courses include all required courses (departmental and non-departmental) as well as technical complementary courses.

Note to CEGEP students

If you have successfully completed a course at CEGEP that is equivalent to CHEM 212 or CHEM 234, you may obtain transfer credits for either or both courses by passing the McGill Science Placement Exam for the course(s). You must complete an application form available on the Science Placement Exam website and an application fee will be charged to your student account. Science placement exams take place in August and September before classes begin. If you pass the exam(s), transfer credits for the course(s) will be reflected on your transcript and your program credit requirements will be decreased to reflect these transfer credits. For information on Science Placement Exams, including application deadlines, the application form, application fee, dates, times, and location of the exams, see http://www.mcgill.ca/students/exams/science. If you do not pass the placement exams, you must register for CHEM 212 and CHEM 234 during your studies at McGill as outlined in your program requirements.

Required Year 0 (Freshman) Courses

29 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 116-credit program.

For information on transfer credit for French Baccalaureate, International Baccalaureate exams, Advanced Placement exams, Advanced Levels and Science Placement Exams, see http://www.mcgill.ca/engineering/current-students/undergraduate/new-students and select your term of admission.

CHEM 110 (4) General Chemistry 1 CHEM 120 (4) General Chemistry 2

MASses.ear (Application of this three 1 67riculium and Allege (bra) Affiel October Instructuoling at 0 0 1 407.) Tj1 0 0 1 19vb82ses.

FACC 100*	(1)	Introduction to the Engineering Profession
FACC 300	(3)	Engineering Economy
FACC 400	(1)	Engineering Professional Practice
MATH 262	(3)	Intermediate Calculus
MATH 263	(3)	Ordinary Differential Equations for Engineers
		Advanced Calculus for Engineers

CHEE 515+	(3)	Material Surfaces: A Biomimetic Approach
CHEE 521+	(3)	Nanomaterials and the Aquatic Environment
CHEE 541	(3)	Electrochemical Engineering
CHEE 543	(3)	Plasma Engineering
		Introduction to Soft Tissue Bioph 0 0 1 330.386 64P14P287.73 6347p9 0 0 1 3301 0 06 1 70.52 678.4 Tm(CHE31.2(3))

Advanced Separation Processes

CHEE 510

(3)

CIVE 557	(3)	Microbiology for Environmental Engineering
MIME 470	(3)	Engineering Biomaterials
MIME 558	(3)	Engineering Nanomaterials

^{*} BIOT 505 can only be chosen by students taking the Minor in Biotechnology.

List C

0-3 credits

The remaining credits, up to a maximum of 3 credits, may be taken from other suitable undergraduate courses in the Faculty of Engineering, with departmental permission.

Complementary Studies

6 credits (9 credits for students from Quebec CEGEPs)

Group A - Impact of Technology on Society

3 credits from the following:

ANTH 212	(3)	Anthropology of Development
BTEC 502	(3)	Biotechnology Ethics and Society
CIVE 469	(3)	Infrastructure and Society
ECON 225	(3)	Economics of the Environment
ECON 347	(3)	Economics of Climate Change
ENVR 201	(3)	Society, Environment and Sustainability
GEOG 200	(3)	Geographical Perspectives: World Environmental Problems
GEOG 203	(3)	Environmental Systems
GEOG 205	(3)	Global Change: Past, Present and Future
GEOG 302	(3)	Environmental Management 1
MECH 526	(3)	Manufacturing and the Environment
MGPO 440*	(3)	Strategies for Sustainability
MIME 308	(3)	Social Impact of Technology
PHIL 343	(3)	Biomedical Ethics
RELG 270	(3)	Religious Ethics and the Environment
SOCI 235	(3)	Technology and Society
SOCI 312	(3)	Sociology of Work and Industry
URBP 201	(3)	Planning the 21st Century City

^{*} Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B - Humanities and Social Sciences, Management Studies and Law

3 credits (6 credits for students from Quebec CEGEPs) at the 200 level or higher from the following departments:

Anthropology (ANTH)

Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)

History (HIST)

Philosophy (excluding PHIL 210 and PHIL 310)

Political Science (POLI)

Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100) $\,$

Religious Studies (RELG)

^{**} Students may choose only one project course: CHEE 363, CHEE 494, CHEE 495, or CHEE 496.

School of Social Work (SWRK)

Sociology (excluding SOCI 350)

OR 3 credits from the following:

ARCH 528	(3)	History of Housing
BUSA 465*	(3)	Technological Entrepreneurship
ENVR 203	(3)	Knowledge, Ethics and Environment
ENVR 400	(3)	Environmental Thought
FACC 220	(3)	Law for Architects and Engineers
FACC 500	(3)	Technology Business Plan Design
FACC 501	(3)	Technology Business Plan Project
INDR 294*	(3)	Introduction to Labour-Management Relations
MATH 338	(3)	History and Philosophy of Mathematics
MGCR 222*	(3)	Introduction to Organizational Behaviour
MGCR 352*	(3)	Principles of Marketing
ORGB 321*	(3)	Leadership
ORGB 423*	(3)	Human Resources Management

^{*} Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

12.4.6.1 More about the B.Eng. Degree in Chemical Engineering

Courses CHEE 582 and CHEE 584 comprise a **Polymeric Materials** sequence, while courses CHEE 380 and CHEE 484 present fundamental aspects of materials science and engineering, respectively. Additional courses in the polymer materials area are available in the Chemistry Department (*e.g.*, CHEM 574) or at the graduate level (CHEE 681). The Department has considerable expertise in the polymer area.

Courses CHEE 370 and CHEE 474 make up a sequence in **Biochemical Engineering and Biotechnology**. Students interested in this area may take additional courses, particularly those offered by the *section 12.3: Department of Bioengineering* (Faculty of Engineering); by the *: Department of Food Science and Agricultural Chemistry* (Faculty of Agricultural and Environmental Sciences); and courses in biochemistry and microbiology. The food, beverage, and pharmaceutical industries are large industries in the Montreal area, and these courses are relevant to these industries and to the new high-technology applications of biotechnology.

The third area in which there is a sequence of courses is **Pollution Control**. The Department offers three courses in this area: CHEE 521, CHEE 591, and CHEE 593. As some water pollution control problems are solved by microbial processes, course CHEE 474 is also relevant to the pollution control area. Additional courses in this area are listed in the *section 12.11.9: Bachelor of Engineering (B.Eng.) - Minor Environmental Engineering (21 credits)*.

A Minor in Biotechnology is also offered by the Faculties of Engineering and Science with emphasis on molecular biology and chemical engineering processes. A full description of the program appears in the *section 12.11.3: Bachelor of Engineering (B.Eng.) - Minor Biotechnology (for Engineering Students) (24 credits).*

Note: Many of the technical complementaries are offered only in alternate years. Students should, therefore, plan their complementaries as far ahead as possible. With the approval of the instructor and Academic Adviser, students may take graduate (600-level) CHEE courses as technical complementaries.

12.5 Department of Civil Engineering and Applied Mechanics

12.5.1 Location

Macdonald Engineering Building, Room 492 817 Sherbrooke Street West Montreal QC H3A 0C3 Telephone: 514-398-6860 Fax: 514-398-7361

Email: ugradinfo.civil@mcgill.ca
Website: www.mcgill.ca/civil

12.5.2 About the Department of Civil Engineering and Applied Mechanics

Civil engineers have traditionally applied scientific and engineering knowledge to the task of providing the built environment, from its conception and planning to its design, construction, maintenance, rehabilitation, and sustainability. Examples include buildings; bridges; roads; railways; dams; facilities for water supply and treatment; waste disposal; and transportation system.

With the aging and deterioration of an already vast infrastructure, its maintenance and rehabilitation has become an increasingly important role of the civil engineering profession. Also, with worldwide concern about the detrimental impact of human activities on the environment, civil engineers are now in the forefront of developing and providing the means for both prevention and remediation of many aspects of environmental pollution.

Students who wish to extend their knowledge in certain areas beyond the range that the program complementary courses allow can also take a **minor**. Minors are available in fields such as:

- Arts:
- Economics;
- Management;
- · Environmental Engineering;
- · Construction Engineering and Management;
- · and others.

These require additional credits to be taken from a specified list of topics relating to the chosen field. Further information on the various minors may be found in *section 12.11: Minor Programs*. Details on how minors can be accommodated within the Civil Engineering program will be made available during preregistration counselling.

12.5.3 Academic Programs

Considerable freedom exists for students to influence the nature of the program of study which they follow in the Department of Civil Engineering and Applied Mechanics. A variety of advanced **complementary courses** is offered in five main groupings:

- Environmental Engineering;
- Geotechnical and Geoenvironmental Engineering;
- Water Resources and Hydraulic Engineering;
- Structural Engineering;
- Transportation Engineering.

Guidance on the sequence in which required core courses should be taken is provided for students in the form of a sample program which covers the entire period of study. The technical complementary courses selected, usually in the last two terms of the program, will depend upon the student's interests. All students must meet with their *adviser* each term to confirm the courses for which they are registered.

Courses taken in Term 3 or later will depend on a student's interests and ability. Information and advice concerning different possibilities are made available in the Department prior to registration. All programs require the approval of a staff adviser. Programs for students transferring into the Department with advanced standing will be dependent upon the academic credit previously achieved, and such a program will be established only after consultation with a staff adviser.

12.5.4 Civil Engineering and Applied Mechanics Faculty

Chair

Van-Thanh-Van Nguyen

Associate Chair

Yixin Shao

Emeritus Professors

Philip J. Harris; B.Sc.(Manit.), M.Eng., Ph.D.(McG.), F.E.I.C., F.C.S.C.E., Eng.

M. Saeed Mirza; M.S., B.Eng. (Karachi), M.Eng., Ph.D. (McG.), F.E.I.C., F.C.S.C.E., F.A.C.I., Hon. F.I.E.P., Eng.

Stuart B. Savage; B.Eng.(McG.), M.S.Eng.(Cal. Tech.), Ph.D.(McG.), F.R.S.C.

Professors

00πGehr 3D OhluyBj.S.160Q (Trait/Gh)e. D25.7809;184. Την 1. D j (Mn 3) Brig w B8.887 678.4 T187.4slal h 30 0 1 . T j 1 0 0 1 221.641 709.84 T30.473al h 30 0 1 15.672

Ghyslaine McClure; B.Ing.(Montr.), S.M.(MIT), Ph.D.(Montr.), Eng.

Denis Mitchell; B.A.Sc., M.A.Sc., Ph.D.(Tor.), F.A.C.I., Eng. (James McGill Professor)

Van-Thanh-Van Nguyen; B.M.E.(Vietnam), M.C.E.(A.I.T.), D.A.Sc.(Montr.), Eng.

James Nicell; B.A.Sc., M.A.Sc., Ph.D.(Windsor), P.Eng.; Dean, F

CHEM 110	(4)	General Chemistry 1
CHEM 120	(4)	General Chemistry 2
MATH 133	(3)	Linear Algebra and Geometry
MATH 140	(3)	Calculus 1
MATH 141	(4)	Calculus 2
PHYS 131	(4)	Mechanics and Waves
PHYS 142	(4)	Electromagnetism and Optics

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses

98	cred	ii	h
-0	CICU	ш	Ŀ

CCOM 206	(3)	Communication in Engineering
COMP 208	(3)	Computers in Engineering
EPSC 221	(3)	General Geology
FACC 100*	(1)	Introduction to the Engineering Profession
FACC 300	(3)	Engineering Economy
FACC 400	(1)	Engineering Professional Practice
MATH 262	(3)	Intermediate Calculus
MATH 263	(3)	Ordinary Differential Equations for Engineers
MA	(3)	Advanced Calculus for Engineers

CIVE 324	(3)	Sustainable Project Management
CIVE 327	(4)	Fluid Mechanics and Hydraulics
CIVE 418	(4)	Design Project
CIVE 432	(1)	Technical Paper

Complementary Courses

21 credits

List A - Design Technical Complementaries

6-15 credits from the following:

CIVE 416	(3)	Geotechnical Engineering
CIVE 421	(3)	Municipal Systems
CIVE 428	(3)	Water Resources and Hydraulic Engineering
CIVE 430	(3)	Water Treatment and Pollution Control
CIVE 440	(3)	Traffic Engineering and Simulation
CIVE 462	(3)	Design of Steel Structures
CIVE 463	(3)	Design of Concrete Structures

List B - General Technical Complementaries

0-9 credits from the following, or from other suitable undergraduate or 500-level courses:

CHEE 521*	(3)	Nanomaterials and the Aquatic Environment
CIVE 433	(3)	Urban Planning
CIVE 446	(3)	Construction Engineering
CIVE 451	(3)	Geoenvironmental Engineering
CIVE 460	(3)	Matrix Structural Analysis
CIVE 470	(3)	Undergraduate Research Project
CIVE 512	(3)	Advanced Civil Engineering Materials
CIVE 514	(3)	Structural Mechanics
CIVE 520	(3)	Groundwater Hydrology
CIVE 521*	(3)	Nanomaterials and the Aquatic Environment
CIVE 527	(3)	Renovation and Preservation: Infrastructure
CIVE 540	(3)	Urban Transportation Planning
CIVE 542	(3)	Transportation Network Analysis
CIVE 546	(3)	Selected Topics in Civil Engineering 1
CIVE 550	(3)	Water Resources Management
CIVE 551	(3)	Environmental Transport Processes
CIVE 555	(3)	Environmental Data Analysis
CIVE 557	(3)	Microbiology for Environmental Engineering
CIVE 558	(3)	Biomolecular Techniques for Environmental Engineering
CIVE 560	(3)	Transportation Safety and Design
CIVE 561	(3)	Urban Activity, Air Pollution, and Health
CIVE 572	(3)	Computational Hydraulics
CIVE 573	(3)	Hydraulic Structures

Associate Chair, Academic

Roni Khazaka

Associate Chair, Undergraduate Studies

Jonathan P. Webb

Associate Chair, Graduate Programs

Milica Popovich

Emeritus Professors

 $Eric\ L.\ Adler;\ B.Sc.(Lond.),\ M.A.Sc.(Tor.),\ Ph.D.(McG.),\ F.I.E.E.E.,\ Eng.$

Pierre R. Bélanger; B.Eng.(McG.), S.M., Ph.D.(MIT), F.I.E.E.E., Eng.

Maier L. Blostein; B.Eng., M.Eng.(McG.), Ph.D.(Ill.), F.I.E.E.E., Eng.

Clifford H. Champness; M.Sc.(Lond.), Ph.D.(McG.)

Francisco D. Galiana; B.Eng.(McG.), S.M., Ph.D.(MIT), F.I.E.E.E., Eng.

Peter Kabal; B.A.Sc., M.A.Sc., Ph.D.(Tor.)

Lorne Mason; M.Eng., Ph.D.(Sask.)

Boon-Teck Ooi; B.E.(Adel.), S.M.(MIT), Ph.D.(McG.), Eng.

Tomas J.F. Pavlasek; B.Eng., M.Eng., Ph.D.(McG.), Eng.

Nicholas C. Rumin; B.Eng., M.Sc., Ph.D.(McG.), Eng.

Professors

Peter E. Caines; B.A.(Oxf.), D.I.C., Ph.D.(Lond.), F.R.S.C., F.I.E.E.E., F.C.I.A.R., P.Eng. (James McGill Professor and Macdonald Professor)

Benoit Champagne; B.Eng., M.Eng.(Montr.), Ph.D.(Tor.)

Lawrence Chen; B.Eng.(McG.), M.A.Sc., Ph.D.(Tor.)

James Clark; B.Sc., Ph.D.(Br. Col.)

Frank Ferrie; B.Eng., Ph.D.(McG.)

Warren Gross; B.A.Sc.(Wat.), M.A.Sc., Ph.D.(Tor.) (on sabbatical 2016-2017)

Geza Joos; B.Sc.(C'dia), M.Eng., Ph.D.(McG.) (CRC Chair)

Andrew G. Kirk; B.Sc.(Brist.), Ph.D.(Lond.) (James McGill Professor)

Harry Leib; B.Sc.(Technion), Ph.D.(Tor.)

Tho Le-Ngoc; M.Eng.(McG.), Ph.D.(Ott.), F.I.E.E.E.

Martin D. Levine; B.Eng., M.Eng.(McG.), Ph.D.(Lond.), F.C.I.A.R., F.I.E.E.E., Eng.

David A. Lowther; B.Sc.(Lond.), Ph.D.(C.N.A.A.), F.C.A.E., Eng. (James McGill Professor)

David V. Plant; M.S., Ph.D.(Brown), F.I.E.E.E., F.O.S.A., F.E.I.C., F.C.A.E., P.Eng.

Gordon Roberts; B.A.Sc.(Wat.), M.A.Sc., Ph.D.(Tor.), F.I.E.E.E., Eng. (James McGill Professor)

Dániel Varró; M.Sc., Ph.D.(BME)

Jonathan P. Webb; B.A., Ph.D.(Camb.)

Associate Professors

Tal Arbel; M.Eng., Ph.D.(McG.) (on sabbatical 2016–2017)

Jan Bajcsy; B.Sc.(Harv.), M.Eng., Ph.D.(Princ.)

François Bouffard; B.Eng., Ph.D.(McG.)

Benoit Boulet; B.Sc.(Laval), M.Eng.(McG.), Ph.D.(Tor.) (William Dawson Scholar) (Associate Dean, Research & Innovation)

Mark Coates; B.Eng.(Adel.), Ph.D.(Camb.)

Jeremy R. Cooperstock; A.Sc.(Br. Col.), M.Sc., Ph.D.(Tor.)

Associate Professors

Mourad El-Gamal; B.Sc.(Cairo), M.Sc.(Nashville), Ph.D.(McG.) (William Dawson Scholar)

Dennis Giannacopoulos; M.Eng., Ph.D.(McG.)

Roni Khazaka; M.Eng., Ph.D.(Car.)

Fabrice Labeau; M.S., Ph.D.(Louvain) (Associate Dean, Faculty Affairs)

Odile Liboiron-Ladouceur; B.Eng.(McG.), M.Sc., Ph.D.(Col.)

Aditya Mahajan, B.Tech.(Indian IT), M.S., Ph.D.(Mich.), P.Eng. (on sabbatical 2016-2017)

Steve McFee; B.Eng., Ph.D.(McG.)

Zetian Mi; B.A.Sc.(Beijing), M.Sc.(Iowa), Ph.D.(Mich.) (William Dawson Scholar)

Hannah Michalska; B.Sc., M.Sc.(Warsaw), Ph.D.(Lond.)

Sam Musallam; B.Sc., M.Sc., Ph.D.(Tor.)

Milica Popovich; B.Sc.(Colo.), M.Sc., Ph.D.(N'western)

Ioannis Psaromiligkos; B.Sc.(Patras), M.Sc., Ph.D.(Buffalo) (on sabbatical 2016–2017)

Michael Rabbat; B.S.(Ill.), M.S.(Rice), Ph.D.(Wisc.)

Martin Rochette; B.A., M.Eng., Ph.D.(Laval)

Ishiang Shih; M.Eng., Ph.D.(McG.)

Thomas Szkopek; B.A.Sc., M.A.Sc.(Tor.), Ph.D.(Calif.-LA)

Zeljko Zilic; B.Eng.(Zagreb), M.Sc., Ph.D.(Tor.)

Assistant Professors

Shane McIntosh; B.A.(Comp.)(Guelph), M.Sc., Ph.D.(OR0)

generally, to our economy. A graduate of this program is exposed to all basic elements of electrical engineering and can function in any of our client industries. This breadth is what distinguishes an engineer from, for example, a computer scientist or physicist.

In addition to technical complementary courses, students in the Electrical Engineering program take general complementary courses in social sciences, administrative studies, and humanities. These courses allow students to develop specific interests in areas such as psychology, economics, management, or political science.

Required Year 0 (Freshman) Courses

25 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 109- to 114-credit program.

For information on transfer credit for French Baccalaureate, International Baccalaureate exams, Advanced Placement exams, Advanced Levels, and Science Placement Exams, see http://www.mcgill.ca/engineering/current-students/undergraduate/new-students and select your term of admission.

CHEM 120	(4)	General Chemistry 2
MATH 133	(3)	Linear Algebra and Geometry
MATH 140	(3)	Calculus 1
MATH 141	(4)	Calculus 2
		Mechanics and

ECSE 308	(4)	Introduction to Communication Systems and Networks
ECSE 324	(4)	Computer Organization
ECSE 331	(4)	Electronics
ECSE 354	(4)	Electromagnetic Wave Propagation
ECSE 362	(4)	Fundamentals of Power Engineering
ECSE 443	(3)	Introduction to Numerical Methods in Electrical Engineering
ECSE 456	(3)	ECSE Design Project 1
ECSE 457	(3)	ECSE Design Project 2

Technical Complementaries

23-28 credits (7 courses) must be taken, chosen as follows:

8 credits (2 courses) from List A

15 credits (5 courses) from List A or List B

List A: Technical Complementaries with Laboratory Experience

8-28 credits		
ECSE 335	(4)	Microelectronics
ECSE 403	(4)	Control
ECSE 408	(4)	Communication Systems
ECSE 416	(4)	Telecommunication Networks
ECSE 433	(4)	Physical Basis of Transistor Devices
ECSE 444	(4)	Microprocessors
ECSE 470	(4)	Electromechanical Systems

List B: Technical Complementaries

0-15 credits		
ECSE 310	(3)	Thermodynamics of Computing
ECSE 325	(3)	Digital Systems
ECSE 405	(3)	Antennas
ECSE 412	(3)	Discrete Time Signal Processing
ECSE 413	(3)	Communications Systems 2
ECSE 415	(3)	Intro to Computer Vision
ECSE 420	(3)	Parallel Computing
ECSE 421	(3)	Embedded Systems
ECSE 422	(3)	Fault Tolerant Computing
ECSE 423	(3)	Fundamentals of Photonics
ECSE 424	(3)	Human-Computer Interaction
ECSE 425	(3)	Computer Organization and Architecture
ECSE 427	(3)	Operating Systems
ECSE 430	(3)	Photonic Devices and Systems
ECSE 431	(3)	Introduction to VLSI CAD
ECSE 435	(3)	Mixed-Signal Test Techniques
ECSE 436	(3)	Signal Processing Hardware

ECSE 450	(3)	Electromagnetic Compatibility
ECSE 451	(3)	EM Transmission and Radiation
ECSE 460*	(3)	Appareillage électrique (Electrical Power Equipment)
ECSE 463	(3)	Electric Power Generation
ECSE 464	(3)	Power Systems Analysis
ECSE 465	(3)	Power Electronic Systems
ECSE 466*	(3)	Réseaux de distribution
ECSE 467*	(3)	Comportement des réseaux électriques
ECSE 468*	(3)	Electricité industrielle (Industrial Power Systems)
ECSE 469*	(3)	Protection des réseaux électriques
PHYS 434	(3)	Optics
PHYS 446	(3)	Majors Quantum Physics

^{*} Courses taught in French.

Complementary Studies

6 credits

Group A - Impact of Technology on Society

3 credits from the following:

ANTH 212	(3)	Anthropology of Development
BTEC 502	(3)	Biotechnology Ethics and Society
CIVE 469	(3)	Infrastructure and Society
ECON 225	(3)	Economics of the Environment
ECON 347	(3)	Economics of Climate Change
ENVR 201	(3)	Society, Environment and Sustainability
GEOG 200	(3)	Geographical Perspectives: World Environmental Problems
GEOG 203	(3)	Environmental Systems
GEOG 205	(3)	Global Change: Past, Present and Future
GEOG 302	(3)	Environmental Management 1
MECH 526	(3)	Manufacturing and the Environment
MGPO 440*	(3)	Strategies for Sustainability
MIME 308	(3)	Social Impact of Technology
PHIL 343	(3)	Biomedical Ethics
RELG 270	(3)	Religious Ethics and the Environment
SOCI 235	(3)	Technology and Society
SOCI 312	(3)	Sociology of Work and Industry
URBP 201	(3)	Planning the 21st Century City

 $[*]Note: Management \ courses \ have \ limited \ enrolment \ and \ registration \ dates. \ See \ Important \ Dates \ at \ http://www.mcgill.ca/important dates.$

Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 lev

Philosophy (excluding PHIL 210 and PHIL 310)

Political Science (POLI)

Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)

Religious Studies (RELG)

School of Social Work (SWRK)

Sociology (excluding SOCI 350)

OR 3 credits from the following:

ARCH 528	(3)	History of Housing
BUSA 465*	(3)	Technological Entrepreneurship
ENVR 203	(3)	Knowledge, Ethics and Environment
ENVR 400	(3)	Environmental Thought
FACC 220	(3)	Law for Architects and Engineers
FACC 500	(3)	Technology Business Plan Design
FACC 501	(3)	Technology Business Plan Project
INDR 294*	(3)	Introduction to Labour-Management Relations
MATH 338	(3)	History and Philosophy of Mathematics
MGCR 222*	(3)	Introduction to Organizational Behaviour
MGCR 352*	(3)	Principles of Marketing
ORGB 321*	(3)	Leadership
ORGB 423*	(3)	Human Resources Management

^{*} Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

Enhanced Power Concentration

Students following this program must complete 15 credits of technical complementary courses.

The Institute for Electrical Power Engineering was recently established as a province-wide centre for electrical power engineering education. It is funded by industry, mostly Hydro-Québec, and provides a comprehensive program, state-of-the-art laboratory facilities, and a point of contact between industry and universities involved in power engineering.

Note: This program is open to students in the regular Electrical Engineering program only.

Here are some benefits of the concentration:

A complete and up-to-date final-year program in electrical power engineering, with industry-sponsored and supported courses

Access to industry-sponsored projects, internships, and new employment opportunities

ELIGIBILITY CRITERIA

To be considered in September 2016, the applicant must:

- be registered in the B.Eng. program (regular Electrical Engineering);
- have a cumulative GPA of at least 2.5;
- have completed or be registered in ECSE 361 (Power Engineering);
- be able to complete the degree requirements by December 2017;
- agree to follow the curriculum requirements set out below.

SELECTION CRITERIA

The number of students selected, expected to be between five and ten, will be subject to a specific agreement between the University and the Institute. Selection criteria for admission to the Institute will be based on the CGPA and on the curriculum vitae. The selection process for the scholarship may involve an interview with the committee presided by Hydro-Québec and the industrial partners. There is a possibility of an internship with Hydro-Québec.

CURRICULUM REQUIREMENTS FOR SELECTED STUDENTS

Generally, unless the University has authorized specific substitutions, students must complete the degree requirements set out in this eCalendar with the following specifications:

Technical Complementaries and Laboratories (15 credits)

All students must take (or have taken) five courses from the following:

Required Courses

9 credits		
ECSE 462	(3)	Electromechanical Energy Conversion
ECSE 464	(3)	Power Systems Analysis
ECSE 465	(3)	Power Electronic Systems

Students must also complete ECSE 456 and 457 (Electrical Engineering Design Projects 1 and 2) on a practical project in power engineering, preferably at the Institute or with a compan

CHEM 120	(4)	General Chemistry 2
MATH 133	(3)	Linear Algebra and Geometry
MATH 140	(3)	Calculus 1
MATH 141	(4)	Calculus 2
PHYS 131	(4)	Mechanics and Waves
PHYS 142	(4)	Electromagnetism and Optics

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses

23 credits

CCOM 206	(3)	Communication in Engineering
CIVE 281	(3)	Analytical Mechanics
COMP 250	(3)	Introduction to Computer Science
FACC 100*	(1)	Introduction to the Engineering Profession
FACC 300	(3)	Engineering Economy

ECSE 498	(3)	Honours Thesis 1
ECSE 499	(3)	Honours Thesis 2
ECSE 543	(3)	Numerical Methods in Electrical Engineering

Technical Complementaries

23-25 credits (7 courses) must be taken, chosen as follows:

8 credits (2 courses) from List A

6 credits (2 courses) from 500-level ECSE courses

3-4 credits (1 course) from List A, List B, or from 500-level ECSE courses

6-7 credits (2 courses) from List C or from 500-level ECSE courses

List A: Technical Complementaries with Laboratory Experience

8-12 credits from the following:

ECSE 335	(4)	Microelectronics
ECSE 403*	(4)	Control
ECSE 408**	(4)	Communication Systems
ECSE 416	(4)	Telecommunication Networks
ECSE 433	(4)	Physical Basis of Transistor Devices
ECSE 444	(4)	Microprocessors
ECSE 470	(4)	Electromechanical Systems

^{*} ECSE 403 and ECSE 501 cannot both be taken.

List B: Technical Complementaries

0-3 credits		
ECSE 310	(3)	Thermodynamics of Computing
ECSE 325	(3)	Digital Systems
ECSE 420	(3)	Parallel Computing
ECSE 421	(3)	Embedded Systems
ECSE 422	(3)	Fault Tolerant Computing
ECSE 424	(3)	Human-Computer Interaction
ECSE 425	(3)	Computer Organization and Architecture
ECSE 427	(3)	Operating Systems
ECSE 431	(3)	Introduction to VLSI CAD
ECSE 435	(3)	Mixed-Signal Test Techniques
ECSE 436	(3)	Signal Processing Hardware
ECSE 451	(3)	EM Transmission and Radiation
ECSE 460*	(3)	Appareillage électrique (Electrical Power Equipment)
ECSE 464	(3)	Power Systems Analysis
ECSE 467*	(3)	Comportement des réseaux électriques
ECSE 468*	(3)	Electricité industrielle (Industrial Power Systems)
ECSE 469*	(3)	Protection des réseaux électriques

^{*} Courses taught in French.

^{**} ECSE 408 and ECSE 511 cannot both be taken.

List C: Honours Math/Physics Complementary Courses

0-7 credits		
MATH 247	(3)	Honours Applied Linear Algebra
MATH 249	(3)	Honours Complex Variables
MATH 547	(4)	Stochastic Processes
MATH 560	(4)	Optimization
PHYS 357	(3)	Honours Quantum Physics 1
PHYS 434	(3)	Optics
PHYS 457	(3)	Honours Quantum Physics 2
PHYS 558	(3)	Solid State Physics

Complementary Studies

6 credits

Group A - Impact of Technology on Society

3 credits from the following:

ANTH 212	(3)	Anthropology of Development
BTEC 502	(3)	Biotechnology Ethics and Society
CIVE 469	(3)	Infrastructure and Society
ECON 225	(3)	Economics of the Environment
ECON 347	(3)	Economics of Climate Change
ENVR 201	(3)	Society, Environment and Sustainability
GEOG 200	(3)	Geographical Perspectives: World Environmental Problems
GEOG 203	(3)	Environmental Systems
GEOG 205	(3)	Global Change: Past, Present and Future
GEOG 302	(3)	Environmental Management 1
MECH 526	(3)	Manufacturing and the Environment
MGPO 440*	(3)	Strategies for Sustainability
MIME 308	(3)	Social Impact of Technology
PHIL 343	(3)	Biomedical Ethics
RELG 270	(3)	Religious Ethics and the Environment
SOCI 235	(3)	Technology and Society
SOCI 312	(3)	Sociology of Work and Industry
URBP 201	(3)	Planning the 21st Century City

^{*} Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments:

Anthropology (ANTH)

Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)

History (HIST)

Philosophy (excluding PHIL 210 and PHIL 310)

Political Science (POLI)

Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)

Religious Studies (RELG)

School of Social Work (SWRK)

Sociology (excluding SOCI 350)

OR 3 credits from the following:

. D. CTT 500

ARCH 528	(3)	History of Housing
BUSA 465*	(3)	Technological Entrepreneurship
ENVR 203	(3)	Knowledge, Ethics and Environment
ENVR 400	(3)	Environmental Thought
FACC 220	(3)	Law for Architects and Engineers
FACC 500	(3)	Technology Business Plan Design
FACC 501	(3)	Technology Business Plan Project
INDR 294*	(3)	Introduction to Labour-Management Relations
MATH 338	(3)	History and Philosophy of Mathematics
MGCR 222*	(3)	Introduction to Organizational Behaviour
MGCR 352*	(3)	Principles of Marketing
ORGB 321*	(3)	Leadership
ORGB 423*	(3)	Human Resources Management

^{*} Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirements.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

12.6.6 Bachelor of Engineering (B.Eng.) - Computer Engineering (133 credits)

Program credit weight: 133-140 credits

Program credit weight for Quebec CEGEP students: 111-115 credits Program credit weight for out-of-province students: 133-137 credits

The Computer Engineering program provides students with greater depth and breadth of knowledge in the hardware and software aspects of computers. Students are exposed to both theoretical and practical issues of both hardware and software in well-equipped laboratories. Although the program is designed to meet the growing demands by industry for engineers with a strong background in modern computer technology, it also provides the underlying depth for graduate studies in all fields of Computer Engineering.

In addition to technical complementary courses, students in the program take general complementary courses in social sciences, management studies, and humanities. These courses allow students to develop specific interests in areas such as psychology, economics, management, or political science.

Required Year 0 (Freshman) Courses

25 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 111- to 115-credit program.

For information on transfer credit for French Baccalaureate, International Baccalaureate exams, Advanced Placement exams, Advanced Levels, and Science Placement Exams, see http://www.mcgill.ca/engineering/current-students/undergraduate/new-students and select your term of admission.

CHEM 120	(4)	General Chemistry 2
MATH 133	(3)	Linear Algebra and Geometry
MATH 140	(3)	Calculus 1
MATH 141	(4)	Calculus 2

PHYS 131	(4)	Mechanics and Waves
PHYS 142	(4)	Electromagnetism and Optics

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Administrative Studies, and Law, listed below under Complementary Studies (Group B).

Required Non-Departmental Courses

23 credits		
CCOM 206	(3)	Communication in Engineering
COMP 250	(3)	Introduction to Computer Science
COMP 251	(3)	Algorithms and Data Structures
FACC 100*	(1)	Introduction to the Engineering Profession
FACC 300	(3)	Engineering Economy
FACC 400	(1)	Engineering Professional Practice
MATH 262	(3)	Intermediate Calculus
MATH 263	(3)	Ordinary Differential Equations for Engineers
MATH 363	(3)	Discrete Mathematics

^{*} Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Computer Engineering Courses

64 credits		
ECSE 200	(3)	Electric Circuits 1
ECSE 202	(3)	Introduction to Software Development
ECSE 205	(3)	Probability and Statistics for Engineers
ECSE 206	(3)	Introduction to Signals and Systems
ECSE 210	(3)	Electric Circuits 2
ECSE 211	(3)	Design Principles and Methods
ECSE 222	(3)	Digital Logic
ECSE 223	(3)	Model-Based Programming
ECSE 308	(4)	Introduction to Communication Systems and Networks
ECSE 310	(3)	Thermodynamics of Computing
ECSE 321	(3)	Introduction to Software Engineering
ECSE 324	(4)	Computer Organization
ECSE 325	(3)	Digital Systems
ECSE 331	(4)	Electronics
ECSE 353	(3)	Electromagnetic Fields and Waves
ECSE 425	(3)	Computer Organization and Architecture
ECSE 427	(3)	Operating Systems
ECSE 444	(4)	Microprocessors
ECSE 456	(3)	ECSE Design Project 1
ECSE 457	(3)	ECSE Design Project 2

Complementary Courses

^{*} Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

21-28 credits

Technical Complementaries

15-19 credits (5 courses) must be taken, chosen as follows:

9-11 credits (3 courses) from List A

6-8 credits (2 courses) from List A or List B

List A

9-17 credits from the following:

(3) Artificial Intelligence

3 credits from the following:

ANTH 212	(3)	Anthropology of Development
BTEC 502	(3)	Biotechnology Ethics and Society
CIVE 469	(3)	Infrastructure and Society
ECON 225	(3)	Economics of the Environment
ECON 347	(3)	Economics of Climate Change
ENVR 201	(3)	Society, Environment and Sustainability
GEOG 200	(3)	Geographical Perspectives: World Environmental Problems
GEOG 203	(3)	Environmental Systems
GEOG 205	(3)	Global Change: Past, Present and Future
GEOG 302	(3)	Environmental Management 1
MECH 526	(3)	Manufacturing and the Environment
MGPO 440*	(3)	Strategies for Sustainability
MIME 308	(3)	Social Impact of Technology
PHIL 343	(3)	Biomedical Ethics
RELG 270	(3)	Religious Ethics and the Environment
SOCI 235	(3)	Technology and Society
SOCI 312	(3)	Sociology of Work and Industry
URBP 201	(3)	Planning the 21st Century City

^{*} Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments:

Anthropology (ANTH)

Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)

History (HIST)

Philosophy (excluding PHIL 210 and PHIL 310)

Political Science (POLI)

Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100) $\,$

Religious Studies (RELG)

School of Social Work (SWRK)

Sociology (excluding SOCI 350)

OR 3 credits from one the following:

ARCH 528	(3)	History of Housing
BUSA 465*	(3)	Technological Entrepreneurship
ENVR 203	(3)	Knowledge, Ethics and Environment
ENVR 400	(3)	Environmental Thought
FACC 220	(3)	Law for Architects and Engineers
FACC 500	(3)	Technology Business Plan Design
FACC 501	(3)	Technology Business Plan Project
INDR 294*	(3)	Introduction to Labour-Management Relations
MATH 338	(3)	History and Philosophy of Mathematics
MGCR 222*	(3)	Introduction to Organizational Behaviour
MGCR 352*	(3)	Principles of Marketing

ORGB 321*	(3)	Leadership
ORGB 423*	(3)	Human Resources Management

^{*} Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

12.6.7 Bachelor of Software Engineering (B.S.E.) - Software Engineering (137 credits)

Program credit weight: 137-144 credits

Program credit weight for Quebec CEGEP students: 115-119 credits Program credit weight for out-of-province students: 137-141 credits

This program offers students the opportunity to focus their studies on the skills needed to design and develop complex software systems. This emerging field of engineering is a major component of the growing Information Technology (IT) sector of the economy, in which the demand for qualified personnel continues to outstrip supply. Graduates of this program will have a solid foundation for careers in the software industry.

In addition to technical complementary courses, students take general complementary courses in social sciences, management studies, and humanities. These courses allow students to develop specific interests in areas such as psychology, economics, management, or political science.

Required Year 0 (Freshman) Courses

25 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 115- to 119-credit program.

For information on transfer credit for French Baccalaureate, International Baccalaureate exams, Advanced Placement exams, Advanced Levels, and Science Placement Exams, see http://www.mcgill.ca/engineering/current-students/undergraduate/new-students and select you 0 1 3907sPL9dnD(A)Tj1 0 0 1 1s MRequiG5 poli:

FACC 300	(3)	Engineering Economy
FACC 400	(1)	Engineering Professional Practice
MATH 262	(3)	Intermediate Calculus
MATH 263	(3)	Ordinary Differential Equations for Engineers
MATH 363	(3)	Discrete Mathematics

^{*} Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Software Engineering Courses

52 credits		
ECSE 200	(3)	Electric Circuits 1
ECSE 202	(3)	Introduction to Software Development
ECSE 205	(3)	Probability and Statistics for Engineers
ECSE 211	(3)	Design Principles and Methods
ECSE 222	(3)	Digital Logic
ECSE 223	(3)	Model-Based Programming
ECSE 310	(3)	Thermodynamics of Computing
ECSE 316	(3)	Signals and Networks
ECSE 321	(3)	Introduction to Software Engineering
ECSE 324	(4)	Computer Organization
ECSE 326	(3)	Software Requirements Engineering
ECSE 420	(3)	Parallel Computing
ECSE 427	(3)	Operating Systems
ECSE 428	(3)	Software Engineering Practice
ECSE 429	(3)	Software Validation
ECSE 456	(3)	ECSE Design Project 1
ECSE 457	(3)	ECSE Design Project 2

Complementary Courses

21-28 credits

Technical Complementaries

12-16 credits (4 courses) from the following:

COMP 330	(3)	Theory of Computation
COMP 350	(3)	Numerical Computing
COMP 409	(3)	Concurrent Programming
COMP 417	(3)	Introduction Robotics and Intelligent Systems
COMP 424	(3)	Artificial Intelligence
COMP 512	(4)	Distributed Systems
COMP 520	(4)	Compiler Design
COMP 521	(4)	Modern Computer Games
COMP 525	(3)	Formal Verification
COMP 533	(3)	Model-Driven Software Development
COMP 557	(3)	Fundamentals of Computer Graphics

OMP 566	(3)	Discrete Optimization 1
OMP 575	(3)	Fundamentals of Distributed Algorithms
CSE 325	(3)	Digital Systems
CSE 415	(3)	Intro to Computer Vision
CSE 416	(4)	Telecommunication Networks
CSE 421	(3)	Embedded Systems
CSE 422	(3)	Fault Tolerant Computing
CSE 424	(3)	Human-Computer Interaction
CSE 425	(3)	Computer Organization and Architecture
CSE 444	(4)	Microprocessors
CSE 539*	(3)	Software Language Engineering

500-level ECSE courses are restricted to students with a minimum CGPA of 3.0 and B+ or better in prerequisite courses.

atural Science Complementary Courses

6 credits

udents from CEGEP must complete 6 credits of Natural Science complementary courses; all other students must complete 3 credits of courses.

atural Science complementary courses must be chosen from courses at the 200-level or higher from the following science departments, approved by the ndergraduate Programs Office in the Department of Electrical and Computer Engineering.

Amospheric and Oceanic Sciences (ATOC)

Bology (BIOL)

Chemistry (CHEM)

Earth and Planetary Sciences (EPSC)

Earth System Science (ESYS)

Physics (PHYS)

Complementary Studies

6 credits

Group A - Impact of Technology on Society

3 credits from the following:

ANTH 212

Anthropology of Development

| (3) | Anthropology of Development
| (4) | Anthropology Ethics and Society

TEC 502 IVE 469

(3)Economics or: The condition of the co

SOCI 235	(3)	Technology and Society
SOCI 312	(3)	Sociology of Work and Industry
URBP 201	(3)	Planning the 21st Century City

^{*} Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments:

Anthropology (ANTH)

Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)

History (HIST)

Philosophy (excluding PHIL 210 and PHIL 310)

Political Science (POLI)

Telephone: 514-398-6296 Fax: 514-398-7365

Email: ugrad.mecheng@mcgill.ca Website: www.mcgill.ca/mecheng

12.7.2 About the Department of Mechanical Engineering

Mechanical engineers are involved in the conception, design, implementation, and operation of mechanical systems. Typical application areas include aerospace, energy, manufacturing, machinery, and transportation. Because of the very broad nature of the discipline, there is a high demand for mechanical engineers.

Many mechanical engineers follow other career paths. Graduate studies are useful for the specialists working in research establishments, consulting firms, or in corporate research and development.

To prepare the mechanical engineer for a wide range of career possibilities, there is a heavy emphasis in our curriculum on the fundamental analytical disciplines. This is balanced by a sequence of experimental and design engineering courses, which include practice in design, manufacturing, and experimentation. In these courses, students learn how to apply their analytical groundwork to the solution of practical problems.

Concentrations in **Aeronautical Engineering**, **Mechatronics***, and **Design** are available for students in either the regular or Honours program who wish to specialize in these areas.

While the program is demanding, there is time for many extracurricular activities. Students are active in such professional societies as *CASI* (Canadian Aeronautics and Space Institute), *SAE*

Adjunct Professors

Alireza Najafi-Yazdi

Aditya Paranjape

Peter Radziszewski

Gilles Soulez

Course Lecturers

Marwan Kanaan

Richard Klopp

Sudarshan Martins

Alexei Morozov

Amar Sabih

Josef Slanik

Associate Members

Renzo Ceccere

Allen Ehrlicher

Dan Nicolau

Abdolhamid Akbarzadeh Shafaroud

12.7.4 Bachelor of Engineering (B.Eng.) - Mechanical Engineering (142 credits)

Program credit weight: 142-148 credits

Program credit weight for Quebec CEGEP students: 119 credits Program credit weight for out-of-province students: 142 credits

To prepare the mechanical engineer for a wide range of career possibilities, there is a heavy emphasis in our curriculum on the fundamental analytical disciplines. This is balanced by a sequence of experimental and design engineering courses which include practice in design, manufacturing, and experimentation. In these courses, students learn how to apply their analytical groundwork to the solution of practical problems.

Special interests are satisfied by selecting appropriate complementary courses from among those offered with a specific subject concentration, such as management, industrial engineering, computer science, controls and robotics, bio-engineering, aeronautics, combustion, systems engineering, etc.

Required Year 0 (Freshman) Courses

29 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 118-credit program.

For information on transfer credit for French Baccalaureate, International Baccalaureate exams, Advanced Placement exams, Advanced Levels, and Science Placement Exams, see http://www.mcgill.ca/engineering/current-students/undergraduate/new-students and select your term of admission.

CHEM 110	(4)	General Chemistry 1
CHEM 120	(4)	General Chemistry 2
MATH 133	(3)	Linear Algebra and Geometry
MATH 140	(3)	Calculus 1
MATH 141	(4)	Calculus 2
PHYS 131	(4)	Mechanics and Waves
PHYS 142	(4)	Electromagnetism and Optics

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses

33 credits		
CCOM 206	(3)	Communication in Engineering
CIVE 207	(4)	Solid Mechanics
COMP 208	(3)	Computers in Engineering
ECSE 461	(3)	Electric Machinery
FACC 100	(1)	Introduction to the Engineering Profession
FACC 300	(3)	Engineering Economy
FACC 400	(1)	Engineering Professional Practice
MATH 262	(3)	Intermediate Calculus
MATH 263	(3)	Ordinary Differential Equations for Engineers
MATH 264	(3)	Advanced Calculus for Engineers
MATH 271	(3)	Linear Algebra and Partial Differential Equations
MIME 260	(3)	Materials Science and Engineering

^{*} Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Mechanical Engineering Courses

	5 . 5	
65 credits		
MECH 201	(2)	Introduction to Mechanical Engineering
MECH 210	(2)	Mechanics 1
MECH 220	(4)	Mechanics 2
MECH 240	(3)	Thermodynamics 1
MECH 262	(3)	Statistics and Measurement Laboratory
MECH 290	(3)	Design Graphics for Mechanical Engineering
MECH 292	(3)	Design 1: Conceptual Design
MECH 309	(3)	Numerical Methods in Mechanical Engineering
MECH 314	(3)	Dynamics of Mechanisms
MECH 315	(4)	Mechanics 3
MECH 321	(3)	Mechanics of Deformable Solids
MECH 331	(3)	Fluid Mechanics 1
MECH 341	(3)	Thermodynamics 2
MECH 346	(3)	Heat Transfer
MECH 360	(3)	Principles of Manufacturing
MECH 362	(2)	Mechanical Laboratory 1
MECH 383	(3)	Applied Electronics and Instrumentation
MECH 393	(3)	Design 2: Machine Element Design
MECH 412	(3)	System Dynamics and Control
MECH 430	(3)	Fluid Mechanics 2
MECH 463D1	(3)	Design 3: Mechanical Engineering Project
MECH 463D2	(3)	Design 3: Mechanical Engineering Project

Technical Complementary Courses

9 credits

6 credits at the 300 level or higher, chosen from Mechanical Engineering courses (subject code MECH). One of these two courses (3 credits) must be from the following list:

CHEE 563*	(3)	Biofluids and Cardiovascular Mechanics
MECH 497	(3)	Value Engineering
MECH 498	(3)	Interdisciplinary Design Project 1
MECH 499	(3)	Interdisciplinary Design Project 2
MECH 513	(3)	Control Systems
MECH 529	(3)	Discrete Manufacturing Systems
MECH 530	(3)	Mechanics of Composite Materials
MECH 532	(3)	Aircraft Performance, Stability and Control
MECH 535	(3)	Turbomachinery and Propulsion
MECH 536	(3)	Aircraft Structures
MECH 541	(3)	Kinematic Synthesis
MECH 543	(3)	Design with Composite Materials
MECH 544	(3)	Processing of Composite Materials
MECH 553	(3)	Design and Manufacture of Microdevices
MECH 557	(3)	Mechatronic Design
MECH 563*	(3)	Biofluids and Cardiovascular Mechanics
MECH 565	(3)	Fluid Flow and Heat Transfer Equipment
MECH 573	(3)	Mechanics of Robotic Systems
MECH 577	(3)	Optimum Design

^{*} Students select either CHEE 563 or MECH 563.

3 credits chosen from courses at the 300 level or higher (approved by the Department) in the Faculty of Engineering (including MECH courses) or from courses in the Faculty of Science, including MATH courses.

Complementary Studies

6 credits

Group A - Impact of Technology on Society

3 credits from the following:

ANTH 212	(3)	Anthropology of Development
BTEC 502	(3)	Biotechnology Ethics and Society
CIVE 469	(3)	Infrastructure and Society
ECON 225	(3)	Economics of the Environment
ECON 347	(3)	Economics of Climate Change
ENVR 201	(3)	Society, Environment and Sustainability
GEOG 200	(3)	Geographical Perspectives: World Environmental Problems
GEOG 203	(3)	Environmental Systems
GEOG 205	(3)	Global Change: Past, Present and Future
GEOG 302	(3)	Environmental Management 1
MECH 526	(3)	Manufacturing and the Environment
MGPO 440*	(3)	Strategies for Sustainability

Social Impact of

Faculty of Agricultural and Environmental Sciences

Faculty of Arts

Faculty of Engineering

Faculty of Religious Studies

Faculty of Science

Schulich School of Music

Typical Program of Study

Students entering the program from Quebec CEGEPs follow a different curriculum from those entering from outside the province. Students will be advised by the Department as to which courses they should select from the course lists above.

For a detailed curriculum, please see http://www.mcgill.ca/mecheng/undergrad/curriculum.

For all minors and concentrations, students should complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the minor or concentration.

12.7.5 Bachelor of Engineering (B.Eng.) - Honours Mechanical Engineering (142 credits)

Program credit weight: 142-148 credits

Program credit weight for Quebec CEGEP students: 119 credits Program credit weight for out-of-province students: 142 credits

To prepare the mechanical engineer for a wide range of career possibilities, there is a heavy emphasis in our curriculum on the fundamental analytical disciplines. This is balanced by a sequence of experimental and design Engineering courses, which include practice in design, manufacturing, and experimentation. In these courses, students learn how to apply their analytical groundwork to the solution of practical problems.

The Honours program is particularly suitable for those with a high aptitude in mathematics and physics and gives a thorough grounding in the basic engineering sciences.

Special interests are satisfied by selecting appropriate complementary courses from among those offered with a specific subject concentration, such as management, industrial engineering, computer science, controls and robotics, bio-engineering, aeronautics, combustion, systems engineering, etc.

Required Year 0 (Freshman) Courses

29 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 119-credit program.

For information on transfer credit for French Baccalaureate, International Baccalaureate exams, Advanced Placement exams, Advanced Levels, and Science Placement Exams, see http://www.mcgill.ca/engineering/current-students/undergraduate/new-students and select your term of admission.

CHEM 110	(4)	General Chemistry 1
CHEM 120	(4)	General Chemistry 2
MATH 133	(3)	Linear Algebra and Geometry
MATH 140	(3)	Calculus 1
MATH 141	(4)	Calculus 2
PHYS 131	(4)	Mechanics and Waves
PHYS 142	(4)	Electromagnetism and Optics

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses

CCOM 206	(3)	Communication in Engineering
CIVE 207	(4)	Solid Mechanics
COMP 208	(3)	Computers in Engineering

FACC 100*	(1)	Introduction to the Engineering Profession
FACC 300	(3)	Engineering Economy
FACC 400	(1)	Engineering Professional Practice
MATH 262	(3)	Intermediate Calculus
MATH 263	(3)	Ordinary Differential Equations for Engineers
MATH 264	(3)	Advanced Calculus for Engineers
MATH 271	(3)	Linear Algebra and Partial Differential Equations

^{*} Note: FA

MATH 417	(3)	Mathematical Programming

6 credits from the following:

MECH 513	(3)	Control Systems
MECH 546	(3)	Finite Element Methods in Solid Mechanics
MECH 562	(3)	Advanced Fluid Mechanics
MECH 577	(3)	Optimum Design
MECH 578	(3)	Advanced Thermodynamics
MECH 579*	(3)	Multidisciplinary Design Optimization

^{*} Note: Students select either MECH 577 or MECH 579

6 credits at the 300 level or higher, chosen from Mechanical Engineering courses (subject code MECH). One of these two courses (3 credits) must be from the following list:

CHEE 563*	(3)	Biofluids and Cardiovascular Mechanics
MECH 497	(3)	Value Engineering
MECH 498	(3)	Interdisciplinary Design Project 1
MECH 499	(3)	Interdisciplinary Design Project 2
MECH 513	(3)	Control Systems
MECH 529	(3)	Discrete Manufacturing Systems
MECH 530	(3)	Mechanics of Composite Materials
MECH 532	(3)	Aircraft Performance, Stability and Control
MECH 535	(3)	Turbomachinery and Propulsion
MECH 536	(3)	Aircraft Structures
MECH 541	(3)	Kinematic Synthesis
MECH 543	(3)	Design with Composite Materials
MECH 544	(3)	Processing of Composite Materials
MECH 553	(3)	Design and Manufacture of Microdevices
MECH 557	(3)	Mechatronic Design
MECH 563*	(3)	Biofluids and Cardiovascular Mechanics
MECH 565	(3)	Fluid Flow and Heat Transfer Equipment
MECH 573	(3)	Mechanics of Robotic Systems
MECH 577	(3)	Optimum Design

^{*}Students choose either CHEE 563 or MECH 563

3 credits chosen from courses at the 300-level or higher (approved by the Department) in the Faculty of Engineering (including MECH courses) or from MIME 260 or from courses at the 300 level or higher in the Faculty of Science, including MATH courses.

ANTH 212	(3)	Anthropology of Development
BTEC 502	(3)	Biotechnology Ethics and Society

CIVE 469	(3)	Infrastructure and Society
ECON 225	(3)	Economics of the Environment
ECON 347	(3)	Economics of Climate Change
ENVR 201	(3)	Society, Environment and Sustainability
GEOG 200	(3)	Geographical Perspectives: World Environmental Problems
GEOG 203	(3)	Environmental Systems
GEOG 205	(3)	Global Change: Past, Present and Future
GEOG 302	(3)	Environmental Management 1
MECH 526	(3)	Manufacturing and the Environment
MGPO 440*	(3)	Strategies for Sustainability
MIME 308	(3)	Social Impact of Technology
PHIL 343	(3)	Biomedical Ethics
RELG 270	(3)	Religious Ethics and the Environment
SOCI 235	(3)	Technology and Society
SOCI 312	(3)	Sociology of Work and Industry
URBP 201	(3)	Planning the 21st Century City

^{*} Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B: Humanities and Social Sciences, Management Studies and Law

3 credits at the 200 level or higher from the following departments:

Anthropology (ANTH)

Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)

History (HIST)

Philosophy (excluding PHIL 210 and PHIL 310)

Political Science (POLI)

Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)

Religious Studies (RELG)

School of Social Work (SWRK)

Sociology (excluding SOCI 350)

OR one of the following:

ARCH 528	(3)	History of Housing
BUSA 465*	(3)	Technological Entrepreneurship
ENVR 203	(3)	Knowledge, Ethics and Environment
ENVR 400	(3)	Environmental Thought
FACC 220	(3)	Law for Architects and Engineers
FACC 500	(3)	Technology Business Plan Design
FACC 501	(3)	Technology Business Plan Project
INDR 294*	(3)	Introduction to Labour-Management Relations
MATH 338	(3)	History and Philosophy of Mathematics
MGCR 222*	(3)	Introduction to Organizational Behaviour
MGCR 352*	(3)	Principles of Marketing
ORGB 321*	(3)	Leadership
ORGB 423*	(3)	Human Resources Management

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

Elective Courses

0-6 credits

Students from Quebec CEGEPs must take 6 credits of courses at the 200 level or higher from the following faculties/schools:

Desautels Faculty of Management

Faculty of Agricultural and Environmental Sciences

Faculty of Arts

Faculty of Engineering

Faculty of Religious Studies

Faculty of Science

Schulich School of Music

Typical Program of Study

Students entering the program from CEGEP follow a different curriculum from those entering from out of province. Students will be advised by the Department as to which courses they should select from the course lists above.

For a detailed curriculum, see http://www.mcgill.ca/mecheng/undergrad/curriculum.

For all minors and concentrations, students should complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the minor or concentration.

12.7.6 Bachelor of Engineering (B.Eng.) - Mechanical Engineering - Aeronautical Engineering (15 credits)

Students in this concentration take five courses in the area of Aeronautical Engineering. All courses must be passed with a grade of C or better.

Students should discuss their course selection with their adviser and complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration.

Required Courses

6	credits
---	---------

MECH 532	(3)	Aircraft Performance, Stability and Control
MECH 533	(3)	Subsonic Aerodynamics

Complementary Courses

9 credits

3-6 credits from the following:

MECH 535	(3)	Turbomachinery and Propulsion
MECH 536	(3)	Aircraft Structures

3-6 credits from the following:

MECH 537	(3)	High-Speed Aerodynamics	
MECH 538	(3)	Unsteady Aerodynamics	
MECH 539	(3)	Computational Aerodynamics	

MECH 565	(3)	Fluid Flow and Heat Transfer Equipment
MECH 566	(3)	Fluid-Structure Interactions

12.7.7 Bachelor of Engineering (B.Eng.) - Honours Mechanical Engineering - Aeronautical Engineering (15 credits)

Students in this concentration take five courses in the area of aeronautical engineering. All courses must be passed with a grade of C or better.

Students should discuss their course selection with their adviser and complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration.

Required Courses

6 credits

MECH 532 (3) Aircraft Performance, Stability and Control

MECH 533 (3) Subsonic Aerodynamics

Complementary Cour

MECH 526	(3)	Manufacturing and the Environment
MECH 528	(3)	Product Design
MECH 530	(3)	Mechanics of Composite Materials
MECH 541	(3)	Kinematic Synthesis
MECH 543	(3)	Design with Composite Materials
MECH 557	(3)	Mechatronic Design
MECH 565	(3)	Fluid Flow and Heat Transfer Equipment
MECH 577	(3)	Optimum Design
MECH 579	(3)	Multidisciplinary Design Optimization

12.7.9 Bachelor of Engineering (B.Eng.) - Honours Mechanical Engineering - Design (15 credits)

Students in this concentration take five courses in the area of design, including the completion of an interdisciplinary project.

Students should complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration.

Total concentration credit weight: 15-16 credits

Required Courses

6 credits		
MECH 498	(3)	Interdisciplinary Design Project 1
MECH 499	(3)	Interdisciplinary Design Project 2

Complementary Courses

9-10 credits from the following:

ARCH 515	(3)	Sustainable Design
CHEE 453	(4)	Process Design
MECH 497	(3)	Value Engineering
MECH 526	(3)	Manufacturing and the Environment
MECH 528	(3)	Product Design
MECH 530	(3)	Mechanics of Composite Materials
MECH 541	(3)	Kinematic Synthesis
MECH 543	(3)	Design with Composite Materials
MECH 557	(3)	Mechatronic Design
MECH 565	(3)	Fluid Flow and Heat Transfer Equipment
MECH 577	(3)	Optimum Design
MECH 579	(3)	Multidisciplinary Design Optimization

12.7.10 Bachelor of Engineering (B.Eng.) - Mechanical Engineering - Mechatronics (18 credits)

Students in this concentration take six courses in the area of control, robotics, and/or CAD/CAM.

Students should complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration.

Required Courses

12 credits

^{**}Not offered until further notice.**

MECH 513	(3)	Control Systems
MECH 554	(3)	Microprocessors for Mechanical Systems
MECH 557	(3)	Mechatronic Design
MECH 572	(3)	Introduction to Robotics

Complementary Courses

6 credits from the following:

MECH 528	(3)	Product Design	
MECH 541	(3)	Kinematic Synthesis	
MECH 573	(3)	Mechanics of Robotic Systems	

12.7.11 Bachelor of Engineering (B.Eng.) - Honours Mechanical Engineering - Mechatronics (18 credits)

Students in this concentration take six courses in the area of control, robotics, and/or CAD/CAM.

Students should complete a Course Authorization Form, available from the Student Affairs Office (Engineering Student Centre) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration.

Required Courses

12 credits		
MECH 513	(3)	Control Systems
MECH 554	(3)	Microprocessors for Mechanical Systems
MECH 557	(3)	Mechatronic Design
MECH 572	(3)	Introduction to Robotics

Complementary Courses

6 credits from the following:

MECH 528	(3)	Product Design
MECH 541	(3)	Kinematic Synthesis
MECH 573	(3)	Mechanics of Robotic Systems

12.8 Department of Mining and Materials Engineering

12.8.1 Location

General Office:

Wong Building, Room 2140 3610 University Street Montreal QC H3A 0C5

Website: www.mcgill.ca/minmat

Materials:

Wong Building, Room 2140 3610 University Street Montreal QC H3A 0C5 Telephone: 514-398-1040 Fax: 514-398-4492

^{**}Not offered until further notice**

Website:www

Professors

Faramarz (Ferri) P. Hassani; B.Sc., Ph.D.(Nott.), C.Eng.(U.K. Reg.) (George Boyd Webster Professor)

Hani S. Mitri; B.Sc.(Cairo), M.Eng., Ph.D.(McM.), Eng.

 $Stephen \ Yue; \ B.Sc., \ Ph.D. (Leeds) \ (\textit{James McGill Professor}) \ (\textit{Lorne Trottier Chair in ,b Chai-5 0 01 Tm} (ottier \ d \ d \ Chen 9 paoecr) Tj1 \ 0 \ 0 \ 1 \ 2.cr$

The program is fully accredited by the Canadian Engineering Accreditation Board (CEAB) and is designed to offer students exceptional training for employment in the field.

The core courses are supplemented by complementary courses, which provide a diverse selection of specialties for the graduating engineer. The course structure is reinforced with laboratory exercises. Graduates find employment in a wide range of industries, including the resource and manufacturing sectors. Students in the Co-op program benefit from practical learning experience gained from work-term employment in meaningful engineering jobs, as well as non-tangible learning experiences arising from the responsibilities required to obtain and successfully complete the work terms.

Regarding the Co-op **program fees**, an amount of \$200 will be billed during ten consecutive terms for a total amount of \$2,000 before graduation. These fees cover expenses directly related to the operation of the Co-op program. Students must register for each of their industrial training courses within the university registration period for returning students or late fees will apply. Before registering for any work term course, students must contact the Materials Co-op Liaison Officer for approval.

12.8.4.2 Student Advising

Students entering this program must plan their schedule of studies in consultation with one of the departmental advisers. Appointments may be obtained by contacting the Administrative and Student Affairs Coordinator.

For more information, please refer to the *Academic Advising* section of our website.

12.8.4.3 Bachelor of Engineering (B.Eng.) - Materials Engineering CO-OP (148 credits)

Program credit weight: 148 credits

Program credit weight for Quebec CEGEP students: 119 credits

In addition to regular courses and laboratories, the B.Eng. Materials Engineering curriculum includes seminars, colloquia, and student projects reinforced by field trips to industrial operations.

Students entering this program must plan their schedule of studies in consultation with a departmental adviser.

Required Year 0 (Freshman) Courses

29 credits

33 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 119-credit program.

For information on transfer credit for French Baccalaureate, International Baccalaureate exams, Advanced Placement exams, Advanced Levels, and Science Placement Exams, see http://www.mcgill.ca/engineering/current-students/undergraduate/new-students and select your term of admission.

CHEM 110	(4)	General Chemistry 1
CHEM 120	(4)	General Chemistry 2
MATH 133	(3)	Linear Algebra and Geometry
MATH 140	(3)	Calculus 1
MATH 141	(4)	Calculus 2
PHYS 131	(4)	Mechanics and Waves
PHYS 142	(4)	Electromagnetism and Optics

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses

33 credits		
CCOM 206	(3)	Communication in Engineering
CHEM 233	(3)	Topics in Physical Chemistry
CIVE 205	(3)	Statics
CIVE 207	(4)	Solid Mechanics
COMP 208	(3)	Computers in Engineering
FACC 100*	(1)	Introduction to the Engineering Profession
FACC 300	(3)	Engineering Economy
FACC 400	(1)	Engineering Professional Practice

MATH 262	(3)	Intermediate Calculus
MATH 263	(3)	Ordinary Differential Equations for Engineers
MATH 264	(3)	Advanced Calculus for Engineers
MECH 289	(3)	Design Graphics

st Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Materials Engineering Courses

71 credits		
ECSE 461	(3)	Electric Machinery
MIME 209	(3)	Mathematical Applications
MIME 212	(3)	Engineering Thermodynamics
MIME 250	(3)	Introduction to Extractive Metallurgy
MIME 261	(3)	Structure of Materials
MIME 280	(2)	Industrial Training 1
MIME 311	(3)	Modelling and Automatic Control
MIME 317	(3)	Analytical and Characterization Techniques
MIME 341	(3)	Introduction to Mineral Processing
MIME 345	(3)	Applications of Polymers
MIME 350	(3)	Extractive Metallurgical Engineering
MIME 352	(3)	Hydrochemical Processing
MIME 356	(4)	Heat, Mass and Fluid Flow
MIME 360	(3)	Phase Transformations: Solids
MIME 362	(3)	Mechanical Properties
MIME 380	(2)	Industrial Training 2
MIME 442	(3)	Analysis, Modelling and Optimization in Mineral Processing
MIME 452	(4)	Process and Materials Design
MIME 455	(3)	Advanced Process Engineering
MIME 456	(3)	Steelmaking and Steel Processing
MIME 465	(3)	Metallic and Ceramic Powders Processing
MIME 467	(3)	Electronic Properties of Materials
MIME 473	(3)	Introduction to Computational Materials Design
MIME 480	(2)	Industrial Training 3

Complementary Courses

15 credits

Technical Complementaries

9 credits

6-9 credits from the following:

CHEE 515*	(3)	Material Surfaces: A Biomimetic Approach
CIVE 512	(3)	Advanced Civil Engineering Materials
MECH 530	(3)	Mechanics of Composite Materials
MIME 410	(3)	Research Project

MIME 470	(3)	Engineering Biomaterials
MIME 512	(3)	Corrosion and Degradation of Materials
MIME 515*	(3)	Material Surfaces: A Biomimetic Approach
MIME 526	(3)	Mineral Economics
MIME 542	(3)	Transmission Electron Microscopy

students, in collaboration with the mining engineering program at École Polytechnique in Montreal. Students in the Bilingual Stream are required to take six mining courses, designated by subject code MPMC, at École Polytechnique in the latter part of the program.

Students must register for each work term:

- MIME 290
- MIME 291
- MIME 392

and pay associated fees by the Course Change (add/drop) registration deadline. Before registering for any work term course, students must contact the Mining Co-op Liaison Officer for approval.

12.8.5.2 Student Advising

Students entering this program must plan their schedule of studies in consultation with one of the departmental advisers: Professor Mustafa Kumral or Professor Agus Sasmito.

For more information, please refer to the Academic Advising section of our website.

12.8.5.3 Bachelor of Engineering (B.Eng.) - Mining Engineering CO-OP (150 credits)

Program credit weight: 150-151 credits

Program credit weight for Quebec CEGEP students: 121-122 credits

In addition to regular courses and laboratories, the curriculum of the B.Eng. Mining Engineering Co-op program includes seminars, colloquia, and student projects reinforced by field trips to industrial operations.

Students entering this program must plan their schedule of studies in consultation with a departmental adviser.

Required Year 0 (Freshman) Courses

29 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 121- to 123-credit program.

For information on transfer credit for French Baccalaureate, International Baccalaureate exams, Advanced Placement exams, Advanced Levels, and Science Placement Exams, see http://www.mcgill.ca/engineering/current-students/undergraduate/new-students and select your term of admission.

CHEM 110 (4) General Chemistry 1 CHEM 120 (4) General Chemistry 2

Linear Algebra and .81 109.67 Nt:ra0 1 244.67 801au.163.148 389.5hTreai44.67 801auor Linear

FACC 400	(1)	Engineering Professional Practice
MATH 262	(3)	Intermediate Calculus
MATH 263	(3)	Ordinary Differential Equations for Engineers
MATH 264	(3)	Advanced Calculus for Engineers
MECH 289	(3)	Design Graphics

^{*} Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Mining Engineering Courses

53	credits
IJ	Cicuits

ECSE 461	(3)	Electric Machinery
MIME 200	(3)	Introduction to the Minerals Industry
MIME 203	(2)	Mine Surveying
MIME 209	(3)	Mathematical Applications
MIME 260	(3)	Materials Science and Engineering
MIME 290	(2)	Industrial Work Period 1
MIME 291	(2)	Industrial Work Period 2
MIME 322	(3)	Rock Fragmentation
MIME 323	(3)	Rock and Soil Mass Characterization
MIME 325	(3)	Mineral Industry Economics
MIME 333	(3)	Materials Handling
MIME 340	(3)	Applied Fluid Dynamics
MIME 341	(3)	Introduction to Mineral Processing
MIME 392	(2)	Industrial Work Period 3
MIME 419	(3)	Surface Mining
MIME 422	(3)	Mine Ventilation
MIME 426	(6)	Mine Design and Prefeasibility Study
MPMC 328*	(3)	Environnement et gestion des rejets miniers

^{*} Mining courses taken at École Polytechnique

Complementary Courses

34-35 credits

14 credits from either Stream A or Stream B

Stream A - CEGEP Students

CEGEP students must take the following courses:

MPMC 321*	(3)	Mécanique des roches et contrôle des terrains
MPMC 326*	(3)	Recherche opérationnelle I
MPMC 329*	(2)	Géologie minière
MPMC 330*	(3)	Géotechnique minière
MPMC 421*	(3)	Exploitation en souterrain

^{*} Mining courses taken at École Polytechnique

Stream B - Non-CEGEP Students

Non-CEGEP students must take the following courses:

CIVE 208	(3)	Civil Engineering System Analysis
MIME 329	(2)	Mining Geology
MIME 330	(3)	Mining Geotechnics
MIME 421	(3)	Rock Mechanics
MIME 424	(3)	Underground Mining Methods

Technical Complementaries

14-15 credits

3-6 credits from the following - these courses are offered in alternate years; students are required to take one of these two courses or they may take both:

MIME 413	(3)	Strategic Mine Planning With Uncertainty
MIME 425	(3)	Applied Stochastic Orebody Modelling

8-12 credits can be chosen from the following or from any other approved technical courses in Engineering, Management, or Science (including mathematics courses).

Note: Not all courses are given annually; see the "Courses" section of this eCalendar to know if a course is offered.

CFIN 410	(3)	Investment and Portfolio Management
CIVE 416	(3)	Geotechnical Engineering
CIVE 421	(3)	Municipal Systems
CIVE 514	(3)	Structural Mechanics
CIVE 584	(3)	Groundwater Engineering
EPSC 320	(3)	Elementary Earth Physics
EPSC 549	(3)	Hydrogeology
FINE 482	(3)	International Finance 1
MIME 320	(3)	Extraction of Energy Resources

ECON 225	(3)	Economics of the Environment
ECON 347	(3)	Economics of Climate Change
ENVR 201	(3)	Society, Environment and Sustainability
GEOG 200	(3)	Geographical Perspectives: World Environmental Problems
GEOG 203	(3)	Environmental Systems
GEOG 205	(3)	Global Change: Past, Present and Future
GEOG 302	(3)	Environmental Management 1
MECH 526	(3)	Manufacturing and the Environment
MGPO 440*	(3)	Strategies for Sustainability
MIME 308	(3)	Social Impact of Technology
PHIL 343	(3)	Biomedical Ethics
RELG 270	(3)	Religious Ethics and the Environment
SOCI 235	(3)	Technology and Society
SOCI 312	(3)	Sociology of Work and Industry
URBP 201	(3)	Planning the 21st Century City

^{*} Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments:

Anthropology (ANTH)

Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)

History (HIST)

Philosophy (excluding PHIL 210 and PHIL 310)

Political Science (POLI)

Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100) $\,$

Religious Studies (RELG)

School of Social Work (SWRK)

Sociology (excluding SOCI 350)

OR 3 credits from the following:

ARCH 528	(3)	History of Housing
BUSA 465*	(3)	Technological Entrepreneurship
ENVR 203	(3)	Knowledge, Ethics and Environment
ENVR 400	(3)	Environmental Thought
FACC 220	(3)	Law for Architects and Engineers
FACC 500	(3)	Technology Business Plan Design
FACC 501	(3)	Technology Business Plan Project
INDR 294*	(3)	Introduction to Labour-Management Relations
MATH 338	(3)	History and Philosophy of Mathematics
MGCR 222*	(3)	Introduction to Organizational Behaviour
MGCR 352*	(3)	Principles of Marketing
ORGB 321*	(3)	Leadership
ORGB 423*	(3)	Human Resources Management

^{*} Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Language Courses

If you are not proficient in a certain language, no more than 3 credits will be given for 6 credits of courses at the 100 level or higher in that language. A maximum of 3 credits of language courses will be counted toward the Complementary Studies requirement.

However, 3-6 credits may be given for language courses at the 200 level or higher that have a sufficient cultural component. These courses must be approved by the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

The School of Urban Planning hosts a number of *events* that are open to undergraduate students and to the public: the Brenda and Samuel Gewurz Lectures in Urban Design bring speakers of international calibre to McGill; the Transportation Research Group at McGill holds seminars on issues pertaining to various aspects of urban and regional transportation; and the "urban.studies@mcgill" seminars bring speakers from academia, the profession and the community to talk about contemporary urban issues.

For details of the M.U.P. admission requirements and curriculum, consult the Faculty of Engineering section for Graduate and Postdoctoral Studies.

12.9.3 Undergraduate Courses in Urban Planning

The following courses taught by faculty in the School of Urban Planning are open to undergraduate students:

Undergraduate Cou	Undergraduate Courses in Urban Planning		
ARCH 520	(3)	Montreal: Urban Morphology	
ARCH 550	(3)	Urban Planning and Development	
CIVE 433	(3)	Urban Planning	
URBP 201	(3)	Planning the 21st Century City	
URBP 501	(2)	Principles and Practice 1	
URBP 504	(3)	Planning for Active Transportation	
URBP 505	(3)	Geographic Information Systems	
URBP 506	(3)	Environmental Policy and Planning	
URBP 507	(3)	Planning and Infrastructure	
URBP 519	(6)	Sustainable Development Plans	
URBP 520	(3)	Globalization: Planning and Change	
URBP 530	(3)	Urban Environmental Planning	
URBP 536	(1)	Transportation Seminar 1	
URBP 537	(1)	Transportation Seminar 2	
URBP 538	(1)	Transportation Seminar 3	
URBP 551	(3)	Understanding Urban Change	

12.9.4 Urban Planning Faculty

Director

Lisa Bornstein (Interim)

Emeritus Professors

David Farley; B.Arch.(McG.), M.Arch., M.C.P.(Harv.)

Jane Matthews-Glenn; B.A., LL.B.(Qu.), D. en droit(Stras.)

Post-Retirement Professor

David Brown; B.A.(Bishop's), M.U.P.(McG.), Ph.D.(Sheff.)

Professor

Richard Shearmur; B.A.(Camb.), M.U.P.(McG.), Ph.D.(Montr.)

Associate Professors

Madhav G. Badami; B.Tech., M.S.(IIT, Madras) M.E.Des.(Calg.), Ph.D.(Br. Col.) (joint appt. with McGill School of Environment)

Lisa Bornstein; B.Sc.(Calif., Berk.), M.R.P.(Cornell), Ph.D.(Calif., Berk.)

Ahmed Elgeneidy; B.A.A., M.Arch.(Alexandria), Ph.D.(Port. St.)

Raphaël Fischler; B.Eng.(Eindhoven), M.Sc., M.C.P

Note: Students are also permitted to register for minor concentrations offered by departments in the Faculty of Arts. Students must obtain approval from both the department in the Faculty of Arts and from the *McGill Engineering Student Centre* (Student Affairs Office) (Frank Dawson Adams Building, Room 22), before registering in one of these minors.

Minor Programs:

- section 12.11.1: Bachelor of Engineering (B.Eng.) Minor Arts (24 credits)
- section 12.11.2: Bachelor of Engineering (B.Eng.) Minor Biomedical Engineering (21 credits)
- section 12.11.3: Bachelor of Engineering (B.Eng.) Minor Biotechnology (for Engineering Students) (24 credits)
- section 12.11.4: Bachelor of Engineering (B.Eng.) Minor Chemistry (25 credits)
- section 12.11.5: Computer Science Courses and Minor Program
- section 12.11.6: Bachelor of Engineering (B.Eng.) Minor Construction Engineering and Management (24 credits)
- section 12.11.7: Bachelor of Engineering (B.Eng.) Minor Economics (18 credits)
- section 12.11.8: Minor in Environment
- section 12.11.9: Bachelor of Engineering (B.Eng.) Minor Environmental Engineering (21 credits)
- section 12.11.10: Minor Programs in Finance, Management, Marketing, and Operations Management
- section 12.11.11: Bachelor of Engineering (B.Eng.) Minor Materials Engineering (24 credits)
- section 12.11.12: Bachelor of Engineering (B.Eng.) Minor Mathematics (24 credits)
- section 12.11.13: Bachelor of Engineering (B.Eng.) Minor Mining Engineering (23 credits)
- section 12.11.14: Minor in Musical Science and Technology
- section 12.11.15: Bachelor of Engineering (B.Eng.) Minor Nanotechnology (21 credits)
- section 12.11.16: Bachelor of Engineering (B.Eng.) Minor Physics (18 credits)
- section 12.11.17: Bachelor of Engineering (B.Eng.) Minor Software Engineering (24 credits)
- section 12.11.18•

One or two courses from the following list (equivalents can be approved):

ANAT 212	(3)	Molecular Mechanisms of Cell Function
BIOC 212	(3)	Molecular Mechanisms of Cell Function
BIOL 200	(3)	Molecular Biology
BIOL 201	(3)	Cell Biology and Metabolism
CHEM 212	(4)	Introductory Organic Chemistry 1
PHGY 209	(3)	Mammalian Physiology 1
PHGY 210	(3)	Mammalian Physiology 2

Specialization Courses

12-18 credits from the following:

Students must select 6 credits from courses outside their department and at least one BMDE course. These BMDE courses are best taken near the end of the program, when prerequisites have been satisfied.

Physiological Systems, Artificial Cells and Organs

BMDE 505	(3)	Cell and Tissue Engineering
PHGY 311	(3)	Channels, Synapses & Hormones
PHGY 312	(3)	Respiratory, Renal, & Cardiovascular Physiology
PHGY 313	(3)	Blood, Gastrointestinal, & Immune Systems Physiology
PHGY 517	(3)	Artificial Internal Organs
PHGY 518	(3)	Artificial Cells

Bioinformatics, Genomics and Proteomics

ANAT 365*	(3)	Cellular Trafficking
ANAT 458	(3)	Membranes and Cellular Signaling
BIOC 311	(3)	Metabolic Biochemistry
BIOC 312	(3)	Biochemistry of Macromolecules
BIOC 458*	(3)	Membranes and Cellular Signaling
	(3)	Molecular Biology Techniques

MMques

ECSE 424	(3)	Human-Computer Interaction
MECH 553	(3)	Design and Manufacture of Microdevices
MIME 360	(3)	Phase Transformations: Solids
MIME 362	(3)	Mechanical Properties
MIME 470	(3)	Engineering Biomaterials
PHYS 534	(3)	Nanoscience and Nanotechnology

Biomechanics and Prosthetics

BMDE 503	(3)	Biomedical Instrumentation
CHEE 561	(3)	Introduction to Soft Tissue Biophysics
CHEE 563*	(3)	Biofluids and Cardiovascular Mechanics
MECH 315	(4)	Mechanics 3
MECH 321	(3)	Mechanics of Deformable Solids
MECH 530	(3)	Mechanics of Composite Materials
MECH 561	(3)	Biomechanics of Musculoskeletal Systems
MECH 563*	(3)	Biofluids and Cardiovascular Mechanics
MIME 360	(3)	Phase Transformations: Solids
MIME 362	(3)	Mechanical Properties

^{*} Students choose either CHEE 563 or MECH 563.

Medical Physics and Imaging

BMDE 519	(3)	Biomedical Signals and Systems
COMP 302	(3)	Programming Languages and Paradigms
COMP 360	(3)	Algorithm Design
COMP 424	(3)	Artificial Intelligence
COMP 558	(3)	Fundamentals of Computer Vision
ECSE 303	(3)	Signals and Systems 1
ECSE 304	(3)	Signals and Systems 2
ECSE 412	(3)	Discrete Time Signal Processing
PHYS 557	(3)	Nuclear Physics

Neural Systems and Biosignal Processing

BMDE 501	(3)	Selected Topics in Biomedical Engineering
BMDE 502	(3)	BME Modelling and Identification
BMDE 503	(3)	Biomedical Instrumentation
BMDE 519	(3)	Biomedical Signals and Systems
ECSE 517	(3)	Neural Prosthetic Systems
ECSE 526	(3)	Artificial Intelligence
PHYS 413	(3)	Physical Basis of Physiology

Complementary Courses

0-6 credits

General

	FACC 300	(3)	Engineering Economy
--	----------	-----	---------------------

Immunology

illillullology		
ANAT 261	(4)	Introduction to Dynamic Histology
BIOC 503	(3)	Immunochemistry
MIMM 214	(3)	Introductory Immunology: Elements of Immunity
MIMM 414	(3)	Advanced Immunology
PHGY 513	(3)	Cellular Immunology

Management

Note: Engineering students may not use these courses to count toward a Management minor, nor toward the Complementary Studies requirement.

ECON 208	(3)	Microeconomic Analysis and Applications
MGCR 211	(3)	Introduction to Financial Accounting
MGCR 341	(3)	Introduction to Finance
MGCR 352	(3)	Principles of Marketing
MGCR 472	(3)	Operations Management

Microbiology

MIMM 323	(3)	Microbial Physiology
MIMM 324	(3)	Fundamental Virology
MIMM 413	(3)	Parasitology
MIMM 465	(3)	Bacterial Pathogenesis
MIMM 466	(3)	Viral Pathogenesis

Molecular Biology (Biology)

BIOL 300	(3)	Molecular Biology of the Gene
BIOL 314	(3)	Molecular Biology of Oncogenes
BIOL 520	(3)	Gene Activity in Development
BIOL 524	(3)	Topics in Molecular Biology
BIOL 551	(3)	Principles of Cellular Control

Molecular Biology (Biochemistry)

BIOC 311	(3)	Metabolic Biochemistry
BIOC 312	(3)	Biochemistry of Macromolecules
BIOC 450	(3)	Protein Structure and Function
BIOC 454	(3)	Nucleic Acids
PSYT 455	(3)	Neurochemistry

Physiology

EXMD 401 (3) Physiology and Biochemistry Endocrine Systems

Organic Chemistry

CHEM 302	(3)	Introductory Organic Chemistry 3
CHEM 362*	(2)	Advanced Organic Chemistry Laboratory
CHEM 482	(3)	Organic Chemistry: Natural Products
Physical Chemistry	у	
CHEM 345	(3)	Introduction to Quantum Chemistry
CHEM 355	(3)	Applications of Quantum Chemistry
CHEM 493*	(2)	Advanced Physical Chemistry Laboratory

12.11.5 Computer Science Courses and Minor Program

(3)

The School of Computer Science offers an extensive range of courses for Engineering students interested in computers. Engineering students may obtain a Computer Science Minor as part of their B.Eng., IBS SCOOKE Scholing Architely Between by completing 24 credits of courses, passed with a grade of C or better.

Introductory Polymer Chemistry

Btpttix interested in this Minor should contact:

Liette Chin

CHEM 574

Undergraduate Program Coordinator

School of Computer Science

Lorne Trottier Building, Room 2070 Telephone: 514-398-7071, ext. 00118

Email: liette.chin@mcgill.ca

and the Minor Adviser in the School of Computer Science.

12.11.5.1 Computer Science Courses in Engineering Programs

The School of Computer Science offers an extensive range of courses for Engineering students interested in computers. The course taken by students in most B.Eng. programs (COMP 208) and other courses included in the core of the various B.Eng. and B.S.E. programs are listed below.

Search under All Courses for other courses offered by the School of Computer Sciences (subject code COMP).

Computer Science Courses in Engineering Programs			
COMP 202	(3)	Foundations of Programming	
COMP 206	(3)	Introduction to Software Systems	
COMP 208	(3)	Computers in Engineering	
COMP 250	(3)	Introduction to Computer Science	
COMP 251	(3)	Algorithms and Data Structures	
		Programming L73. Engio0.5temsPrtorithms and T9e6temsPrTj1 0 8(PrTjTj1 06T9e6tems)TjTrrce	

requirements, but the Minor will require at least 12 extra credits from Computer Science (COMP) courses beyond those needed for the B.Eng. or B.S.E. degree. Students should consult their departments about the use of complementaries, and credits that can be double counted.

Note: COMP 202 and COMP 208 (compulsory for some Engineering students) do not form part of the Minor in Computer Science.

For more information, see the School of Computer Science website: http://www.cs.mcgill.ca.

Required Courses

6	credits
O	creams

COMP 206	(3)	Introduction to Software Systems
COMP 250	(3)	Introduction to Computer Science

Complementary Courses

18 credits

3 credits from the following:

COMP 302	(3)	Programming Languages and Paradigms
COMP 303	(3)	Software Design

3 credits from the following:

COMP 273	(3)	Introduction to Computer Systems
ECSE 221	(3)	Introduction to Computer Engineering

3-4 credits from the following:

CIVE 320	(4)	Numerical Methods
COMP 350	(3)	Numerical Computing
ECSE 443	(3)	Introduction to Numerical Methods in Electrical Engineering
MATH 317	(3)	Numerical Analysis
MECH 309	(3)	Numerical Methods in Mechanical Engineering

0-3 credits from the following:

COMP 251	(3)	Algorithms and Data Structures
COMI 231	(3)	rigorithins and Data Structures

6-9 credits chosen from other Computer Science courses at the 300 level or higher.

Notes:

A. COMP 208 may be taken before COMP 250; however, it cannot be taken for credit in the same term or afterward.

B. COMP 396 (Undergraduate Research Project) cannot be taken for credit toward this Minor.

Courses that make considerable use of computing from other departments may also be selected, with the approval of the School of Computer Science. Students should consult with their advisers about counting specific courses.

12.11.6 Bachelor of Engineering (B.Eng.) - Minor Construction Engineering and Management (24 credits)

Minor Adviser: Prof. L. Chouinard, Macdonald Engineering Building, Room 491 (Telephone: 514-398-6446)

Minor program credit weight: 24-25 credits

Note: This Minor is particularly designed for Civil Engineering students, but is open to all B.Eng., B.S.E., and B.Sc.(Arch.) students.

All courses in the Minor must be passed with a grade of C or better.

Prerequisites

CIVE 208	(3)	Civil Engineering System Analysis
CIVE 302	(3)	Probabilistic Systems
COMP 208	(3)	Computers in Engineering
FACC 300	(3)	Engineering Economy

Required Courses: Management and Law

15 credits

CIVE 324	(3)	Sustainable Project Management
FACC 220	(3)	Law for Architects and Engineers
INDR 294	(3)	Introduction to Labour-Management Relations
MGCR 211	(3)	Introduction to Financial Accounting
MGCR 341	(3)	Introduction to Finance

Complementary Courses

3-4 credits (4 credits from List A OR 3 credits from List B)

List A - Building Structures

4 credits from the following:

ARCH 447	(2)	Lighting
ARCH 451	(2)	Building Regulations and Safety
CIVE 492	(2)	Structures

OR

List B - Heavy Construction

3 credits from the following:

MIME 322	(3)	Rock Fragmentation
MIME 333	(3)	Materials Handling

Construction-Related Complementary Courses

6 credits from the following:

BUSA 462	(3)	Management of New Enterprises
CIVE 446	(3)	Construction Engineering
CIVE 527	(3)	Renovation and Preservation: Infrastructure
		Electric MachineructionAReno

12.11.7 Bachelor of Engineering (B.Eng.) - Minor Economics (18 credits)

Minor Adviser: Faculty Student Adviser in the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

Program credit weight: 18 credits

This Minor consists of 18 credits of required and complementary courses given in the Economics Department. In addition, it is presumed that all Engineering students will have a sufficient background in statistics. Engineering Economy, FACC 300, does not form part of this Minor. Engineering students who want to complete a minor in economics are required to complete the following program rather than one of the minor concentrations offered by the Department of Economics in the Faculty of Arts section of this eCalendar, unless they have obtained permission from the Faculty of Engineering.

All courses in the Minor must be passed with a grade of C or better.

Required Courses

n	_		٠.	4	:	4	
9,	വ	re	رد	า	1	т	۹

ECON 209*	(3)	Macroeconomic Analysis and Applications
ECON 230D1**	(3)	Microeconomic Theory
ECON 230D2**	(3)	Microeconomic Theory

^{*} This requirement is waived for students who choose ECON 330D1/ECON 330D2 from the list of complementary courses. Students may not take both ECON 209 and ECON 330D1/ECON 330D2.

Complementary Courses

\sim	11.	C
9	credits	trom

ECON 225	(3)	Economics of the Environment
ECON 303	(3)	Canadian Economic Policy
ECON 304	(3)	Financial Instruments & Institutions
ECON 305	(3)	Industrial Organization
ECON 306	(3)	Labour Markets and Wages
ECON 308	(3)	Governmental Policy Towards Business
ECON 313	(3)	Economic Development 1
ECON 314	(3)	Economic Development 2
ECON 316	(3)	The Underground Economy
ECON 326	(3)	Ecological Economics
ECON 330D1	(3)	Macroeconomic Theory
ECON 330D2	(3)	Macroeconomic Theory
ECON 335	(3)	The Japanese Economy
ECON 336	(3)	The Chinese Economy
ECON 337	(3)	Introductory Econometrics 1
ECON 344	(3)	Industrial Revolution and Economic Development
ECON 345	(3)	The International Economy since 1914
ECON 347	(3)	Economics of Climate Change
ECON 405	(3)	Natural Resource Economics
ECON 406	(3)	Topics in Economic Policy
ECON 408	(3)	Public Sector Economics 1
ECON 409	(3)	Public Sector Economics 2
ECON 411	(3)	Economic Development: A World Area
ECON 416	(3)	Topics in Economic Development 2

^{**} Students may, with consent of the instructor, take ECON 250D1/ECON 250D2 Introduction to Economic Theory: Honours, in place of ECON 230D1/ECON 230D2.

Topics in Economic Theory

Globalization: Planning and Change

* A minimum of 6 credits must be from outside the student's department. A maximum of 6 credits of research project courses may be counted toward this category, provided the project has sufficient environmental engineering content (project requires approval of project supervisor and coordinator of the Minor).

Stream B

15 credits of courses that make up the "Barbados Field Study Semester" below, provided the project for CIVE/AGRI/URBP 519 Sustainable Development Plans has sufficient environmental engineering content (project requires approval of the Coordinator of the Minor);

AND

One course (3-4 credits) chosen from the Engineering Course List below, excluding CHEE 496.

Barbados Field Study Courses

Required Courses

6 credits

URBP 520

URBP 507	(3)	Planning and Infrastructure

(3)

Complementary Courses

9 credits

One of the following cross-listed courses (3 credits):

AGRI 452	(3)	Water Resources in Barbados
CIVE 452	(3)	Water Resources in Barbados

AND

One of the following cross-listed project courses (6 credits):

AGRI 519	(6)	Sustainable Development Plans
CIVE 519	(6)	Sustainable Development Plans
URBP 519	(6)	Sustainable Development Plans

Stream C

9 credits of courses specified from the "Barbados Interdisciplinary Tropical Studies (BITS)" field semester below, provided the project has sufficient environmental engineering content (project requires approval of the Coordinator of the Minor):

AEBI 425	(3)	Tropical Energy and Food
AEBI 427	(6)	Barbados Interdisciplinary Project

AND

9 credits chosen from the Engineering Course List below, excluding CHEE 496.

Engineering Course List

Courses offered at the Macdonald campus:

BREE 217*	(3)	Hydrology and Water Resources
BREE 322	(3)	Organic Waste Management
BREE 416	(3)	Engineering for Land Development
BREE 518	(3)	Ecological Engineering

^{*} Not open to students who have passed CIVE 323.

Courses offered at the Downtown campus:

ARCH 377	(3)	Energy, Environment and Buildings
ARCH 515	(3)	Sustainable Design
CHEE 351	(3)	Separation Processes
CHEE 370	(3)	Elements of Biotechnology
CHEE 496	(3)	Environmental Research Project
CHEE 591	(3)	Environmental Bioremediation
CHEE 592	(3)	Industrial Air Pollution Control
CHEE 593	(3)	Industrial Water Pollution Control
CIVE 225	(4)	Environmental Engineering
CIVE 323**	(3)	Hydrology and Water Resources
CIVE 421	(3)	Municipal Systems
CIVE 428	(3)	Water Resources and Hydraulic Engineering
CIVE 430	(3)	Water Treatment and Pollution Control
CIVE 451	(3)	Geoenvironmental Engineering
CIVE 550	(3)	Water Resources Management
CIVE 555	(3)	Environmental Data Analysis
CIVE 557	(3)	Microbiology for Environmental Engineering
CIVE 572	(3)	Computational Hydraulics
CIVE 573	(3)	Hydraulic Structures
CIVE 574	(3)	Fluid Mechanics of Water Pollution
CIVE 577	(3)	River Engineering
CIVE 584	(3)	Groundwater Engineering
MECH 447	(3)	Combustion
MECH 526	(3)	Manufacturing and the Environment
MECH 534	(3)	Air Pollution Engineering
MECH 535	(3)	Turbomachinery and Propulsion
MIME 422	(3)	Mine Ventilation
MIME 512	(3)	Corrosion and Degradation of Materials
MPMC 328	(3)	Environnement et gestion des rejets miniers
URBP 506	(3)	Environmental Policy and Planning

^{**} Not open to students who have passed BREE 217.

Non-Engineering Course List

Courses offered at the Macdonald campus:

LSCI 230+	(3)	Introductory Microbiology
MICR 331+	(3)	Microbial Ecology
MICR 341	(3)	Mechanisms of Pathogenicity
RELG 270	(3)	Religious Ethics and the Environment
SOIL 210++	(3)	Principles of Soil Science
SOIL 331	(3)	Environmental Soil Physics
WILD 375	(3)	Issues: Environmental Sciences
WILD 415	(2)	Conservation Law
WOOD 420	(3)	Environmental Issues: Forestry

MATH 223	(3)	Linear Algebra
MATH 247	(3)	Honours Applied Linear Algebra
MATH 248	(3)	Honours Advanced Calculus
MATH 262	(3)	Intermediate Calculus
MATH 263	(3)	Ordinary Differential Equations for Engineers
MATH 264	(3)	Advanced Calculus for Engineers
MATH 270	(3)	Applied Linear Algebra
MATH 271	(3)	Linear Algebra and Partial Differential Equations
MATH 314	(3)	Advanced Calculus
MATH 315	(3)	Ordinary Differential Equations
MATH 319	(3)	Introduction to Partial Differential Equations
MATH 325	(3)	Honours Ordinary Differential Equations

12.11.13 Bachelor of Engineering (B.Eng.) - Minor Mining Engineering (23 credits)

Minor Adviser: Prof. Mustafa Kumral (Minor Coordinator)

Frank Dawson Adams Building, Room 119

Program credit weight: 23 credits

One of the required courses is a work term for which enrolment may be limited.

Required Courses

14 credits		
MIME 200	(3)	Introduction to the Minerals Industry
MIME 291	(2)	Industrial Work Period 2
MIME 322	(3)	Rock Fragmentation
MIME 325	(3)	Mineral Industry Economics
MIME 333	(3)	Materials Handling

Complementary Courses

9 credits

List A: Mining Engineering

3-9 credits from the following:

MIME 320	(3)	Extraction of Energy Resources
MIME 323	(3)	Rock and Soil Mass Characterization
MIME 341	(3)	Introduction to Mineral Processing
MIME 419	(3)	Surface Mining
MIME 422	(3)	Mine Ventilation
MIME 520	(3)	Stability of Rock Slopes
MIME 521	(3)	Stability of Underground Openings
MIME 526	(3)	Mineral Economics
MIME 588	(3)	Reliability Analysis of Mining Systems

List B: Mechanical Engineering

0-6 credits from the following:

MECH 497	(3)	Value Engineering
MECH 557	(3)	Mechatronic Design
MECH 572	(3)	Introduction to Robotics
MECH 573	(3)	Mechanics of Robotic Systems
MECH 577	(3)	Optimum Design

List C: Civil Engineering

0-6 credits from the following:

CIVE 416	(3)	Geotechnical Engineering
CIVE 451	(3)	Geoenvironmental Engineering
CIVE 462	(3)	Design of Steel Structures
CIVE 463	(3)	Design of Concrete Structures
CIVE 527	(3)	Renovation and Preservation: Infrastructure

List D: Chemical Engineering

0-6 credits from the following:

CHEE 453	(4)	Process Design
CHEE 455	(3)	Process Control
CHEE 484	(3)	Materials Engineering

List E: Electrical Engineering

0-6 credits from the following:

ECSE 404	(3)	Control Systems
ECSE 426	(3)	Microprocessor Systems
ECSE 436	(3)	Signal Processing Hardware
ECSE 451	(3)	EM Transmission and Radiation
ECSE 464	(3)	Power Systems Analysis

12.11.14 Minor in Musical Science and Technology

The Musical Science and Technology Minor focuses on interdisciplinary topics in science and technology applied to music. The goal of the program is to help prepare students for commercial jobs in the audio technology sector and/or for subsequent graduate research study. Enrolment in the MST Minor is limited to students with e

Minor Adviser:

Prof. Gary Scavone

Area Chair for the Music Technology Program

Email: gary.scavone@mcgill.ca

12.11.15 Bachelor of Engineering (B.Eng.) - Minor Nanotechnology (21 credits)

Through courses already offered in the Faculties of Science, Engineering, and Medicine, depending on the courses completed, undergraduate students will acquire knowledge in some of the following areas related to nanotechnology:

- Nanomaterial synthesis and processing approaches
- Physicochemistry and quantum behavior of nanomaterials
- State-of-the-art techniques for nanomaterial characterization and detection
- Applications of nanomaterials in engineered solutions
- Nanomaterials in medicine and pharmacology
- Nanomaterials in electronics and energy
- Environmental, health, and social impacts of nanomaterials

Minor program credit weight: 21-22 credits

Minor Advisers:

Prof. N. Tufenkji, Wong Building, Room 4300 (Engineering students)

Prof. P. Grutter, Rutherford Physics Building, Room 108 (Science students)

Students must complete 21 credits of courses as indicated below. For students in the Faculty of Engineering, a maximum of 12 credits of courses in the student's major may double-count with the Minor. For students in the Faculty of Science, 18 credits of the Minor must be exclusively for the Minor.

Students who have not taken the listed prerequisites for any of these courses should ensure that they have the adequate background and/or meet with the instructor before registering for the course. Permission from the instructor and/or department may be required.

The program is open to undergraduate students that are in Year 2 or higher.

Complementary Courses (21-22 credits)

Group A

Students must complete a minimum of 3 credits from the following list of courses:

BIEN 510	(3)	Nanoparticles in the Medical Sciences
BMDE 508	(3)	Introduction to Micro and Nano-Bioengineering
CHEE 521*	(3)	Nanomaterials and the Aquatic Environment
CHEM 534*	(3)	Nanoscience and Nanotechnology
CIVE 521*	(3)	Nanomaterials and the Aquatic Environment
ECSE 535**	(3)	Nanoelectronic Devices
MIME 570	(3)	Micro- and Nano-Fabrication Fundamentals
PHYS 534*	(3)	Nanoscience and Nanotechnology

Group B

Students will be required to take up to 18-19 credits of courses from Group B, depending on how many courses from Group A were taken.

Bioengineering

BIEN 520	(3)	High Throughput Bioanalytical Devices
BIEN 550	(3)	Biomolecular Devices

Chemical Engineering

CHEE 380*	(3)	Materials Science
CHEE 515*	(3)	Material Surfaces: A Biomimetic Approach
CHEE 543	(3)	Plasma Engineering
CHEE 582	(3)	Polymer Science & Engineering
CHEE 585	(3)	Foundations of Soft Matter
CHEE 587	(3)	Chemical Processing: Electronics Industry
Chemistry		
CHEM 334	(3)	Advanced Materials
CHEM 531	(3)	Chemistry of Inorganic Materials
CHEM 582	(3)	Supramolecular Chemistry
CHEM 585	(3)	Colloid Chemistry
CHEM 587	(3)	Topics in Modern Analytical Chemistry
Electrical Engineering		
ECSE 423	(3)	Fundamentals of Photonics
ECSE 430	(3)	Photonic Devices and Systems
ECSE 433	(4)	Physical Basis of Transistor Devices

PHAR 504	(3)	Drug Discovery and Development 2	
Physics			
BIOL 319*	(3)	Introduction to Biophysics	
PHYS 319*	(3)	Introduction to Biophysics	
PHYS 446	(3)	Majors Quantum Physics	
PHYS 558	(3)	Solid State Physics	

^{*} Students can take only one course from each set of the following courses:

- MIME 260, MIME 261, MIME 262 or CHEE 380
- CHEE 515 or MIME 515
- CHEE 521 or CIVE 521
- CHEM 534 or PHYS 534
- BIOL 319 or PHYS 319

^{**} A 3.0 or higher CGPA is required in order to tak

The Software Engineering Minor will prepare engineering students for a career in software engineering. It will pro